如图 四边形abcd是矩形,BC大于AB,角BAD的平分线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 04:03:02
黄金分割的定义:把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比.其比值是一个无理数,用分数表示为(√5-1)/2很显然,F点正是这个黄金分割点,根据定义就知道了.如果要证明的话
(1)∵四边形ABCD是菱形∴AB=BC又∵AB=AC∴△ABC是等边三角形∵E是BC的中点∴AE⊥BC(等腰三角形三线合一性质)∴∠1=90°,∵E、F分别是BC、AD的中点∴AF=1/2ADEC=
证明四个角都是90?由题意知,△ABC,△ACD都是等边三角形因为E,F分别是BC,AD的中点所以AE⊥BC,CF⊥AD即∠AFC=∠AEC=90?又易知∠BAE=30?腺鵄F=60?所以∠EAF=9
证明:因为ABCD是菱形,所以AB=DA,BC=CD且AC垂直BD,又因为EFGH为其各边中点,所以EF∥=AC∥=GH;EH∥=BD∥=FG;∠ABD+∠BAC=90,所以∠FEH=90,所以四边形
证明:连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,∴AC=BD,∵EF为△ABD的中位线,∴EF=12BD,EF∥BD,又GH为△BCD的中位线,∴GH=12B
图呢再问:不敢拍有声音再问: 再答:条件发错了重发。再问: 再答:条件再问:
设CE=x,则BE=4-x∵四边形ABCD是矩形∴ΔABE是直角三角形∵四边形AECF是菱形∴AE=EC由勾股定理得;AB²+BE²=AE²=CE²即2
1.AE=BE=CG=DG;AH=DH=BF=CF;角A、B、C、D都是直角,根据勾股定理,可以计算出EH、HG、GF、EF的长度,可知EH=HG=GF=EF,因此,EFGH是菱形.2.连接矩形的两条
证明:∵四边形ABCD、DEBF都是矩形,AB=BF,∴∠ABM=∠FBN,∴△ABM≌△FBN≌△EDM,∴BN=DM,∴四边形BMDN是平行四边形,同理△ABM≌△FBN,则BM=BN,∴四边形B
/>设AE=x,由四边形AECF是菱形,则EC=x,BE=5-x在直角三角形ABE中,由勾股定理AB^2+BE^2=AE^2解得x=29/10所以S菱形AECF=EC*AB=58/10=29/5
∵ABCD是平行四边形∴AB=DC,AB∥DC∵BE=CF∴BE+EF=EF+CF即BF=CE∵AF=DE∴△ABF≌△DCE(SSS)∴∠B=∠C∵AB∥DC即∠B+∠C=180°∴∠B=∠C=90
证明:∵矩形ABCD∴∠A=∠B=∠C=∠D=90,AB=CD,AD=BC∵E是AB的中点,G是CD的中点∴AE=BE=AB/2,CG=DG=CD/2∴AE=BE=CG=DG∵F是BC的中点,H是AD
…………这个答案应该是C吧你把△ABC先拿出来,其实G是重心楼主学过吗?就是三角形三条中线的交点啊,这里有一个性质,就那你这个图来说,CG是GE的两倍,AG是GF的两倍,还有一条你没画上但是同理,你将
如图所示,作补助线BG因为EF都是中点,所以三角形ABF和三角形CBE的面积同等.S1[四边形ABCD]=ABXBCS2[三角形ABF]=ABXBC/2/2=1/4ABXBCS3[三角形CBE]=BC
连接AC和BD∵E、F、G、H分别是AB、BC、CD、DA的中点∴EF=1/2AC,HG=1/2ACHE=1/2BD,FG=1/2BD∵ABCD是矩形∴AC=BD∴EF=HG=HE=FG∴四边形EFG
证明:四边形EFGH是菱形.连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,∴AC=BD,∵EF为△ABD的中位线,∴EF=12BD,EF∥BD,又GH为△BCD的
因为AD=BC角A=角C=90度,且BD=DB,所以直角三角形ABD全等于直角三角形CDB,所以AB=CD,即对边两两相等,所以ABCD为平行四边形,且有直角,所以ABCD是矩形.
矩形相似可以得到AB/EC=BC/CDAB=CD=a,BC=b得EC=a^2/b对从图中可知道:EC=BC-BE=b-aa^2/b=b-a等式两边同除以b(a/b)^2=1-a/b解这个方程求出的那个
分别过A做CD的垂线,交CD于E,做BC的垂线,交BC的延长线于F,得AE=DE=2,AC=4,CE=2√3所以△ACD面积为0.5*AE*CD=2+2√3由AC=4,得AF=2,CF=2√3,又AB
因为ABCD为平行四边形,所以AB=DC.因为BE=FC,所以BE+EF=CF+EF,即BF=EC因为在三角形ABC和三角形EDC中,AB=DCBF=ECAF=ED所以三角形ABF全等于DEC,角B=