如图 圆o的直径ab 4 半径oc垂直ab
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:01:13
连接OE∵OD=1/2OC∴OD=1/2OE∵∠ODE=90°∴∠OED=30°∵EF‖AB∴∠AOE=∠OED=30°∴∠ABE=15°(一条弧所对的圆周角等于它所对的圆心角的一半)
链接OE,OE为半径,OD为半径的一半,所以三角形OED中,角OED为30度,DOE为60度,所以AOE为30度,得出结论~~~~~
连接CE、CF、EO、FO.因为EF平行于AB,OC垂直于AB,所以D是EF的中点.又因为D是OC的中点,所以四边形CEOF是平行四边形.又因为CO垂直于EF,所以平行四边形CEOF是菱形.所以CE=
设圆O2的半径为R.连结O1O2,过O2做O2E⊥OO1于E,O2D⊥AB于D,由题意圆O1的半径为2根2.由相切两圆的性质得,O1O2=2根2+R,EO1=2根2-R.OO2=4根2-R.在Rt△O
1、图自己画设内切圆半径为x厘米根号2x+x=5x=5(根号2-1)2、第二个题意不明确,三个圆跟圆O有什么关系?
郭敦顒回答:(1)∵AB是⊙O的直径,半径OC⊥AB,且OC是⊙O₁的直径,∴⊙O₁与AB相切于O,⊙O₁与⊙O相切于C.(2)∵AB=8,⊙O₂分别与
连接OE因为OC垂直AB,EF//AB所以OC垂直EF所以角EMO=90度因为OM=1/2OC=1/2OE所以角MEO=30度因为EF//AB所以角AOE=角MEO=30度因为OC垂直AB所以角AOC
设半径为2,则,OG=1,OE=2,EG=OD=√3,DB=√3+2,ED=OG=1角EBA=arctan(√3+2)=75度
因为AB是圆O的直径,点D在圆上所以∠ADB=90°又OC⊥AB所以∠EOB=∠ACB=90°又∠ABD=∠EBO所以Rt△EBO∽Rt△ABD则BO:BD=EB:AB(1)在Rt△EBO中,OB=O
1、证明:(如图)连O1、O2并延长交⊙O2于K点,连接BK则PK是圆⊙O2的直径 O1K∥AD∵∠O1AD=∠AO1
连接O1B,∠Bo1A=2∠COA弧AB所对的圆心角是弧AC的两倍,但是所在圆的的半径是弧AC所在圆的半径的一半,因此它们长相等
∵0E=0F,∴△OEF是等腰△又AB⊥MN∴OP垂直平分底边EF,∴PF=PE∵MN是弦,AB是直径,且AB⊥MN∴AB垂直平分MN,即:pM=pNPm一pE=PN一PFME=FN再答:垂直于弦的直
∵DF⊥OA,OC⊥OA,DE⊥OC∴四边形OEDF为矩形∴EF=OD又∵OD为圆半径,AB=OA+OB=12∴EF=OD=6
连接OD,DF⊥OF,2×OF=OC=OD,所以∠DOF=60°,因为OC⊥AB所以∠DOA=30°,因为△DOB为等腰三角形,∠DOA为外角,等于∠ODB+∠OBD,所以∠DBA=15°,因为∠CB
如图,连接BD,AD.根据已知得B是A关于OC的对称点,所以BD就是AP+PD的最小值,∵AD=2CD,而弧AC的度数是90°的弧,∴AD的度数是60°,所以∠B=30°,∵AB是直径,∴∠ADB=9
连接OE∵OD=1/2OC∴OD=1/2OE∵∠ODE=90°∴∠OED=30°∵EF‖AB∴∠AOE=∠OED=30°∴∠ABE=15°(一条弧所对的圆周角等于它所对的圆心角的一半)
如图,连接O1D,∵圆O1的切线AD交OC的延长线于点E,∴O1D⊥AE,由题意知,CO=AO=2r,O1D=O1C=r,由切线长定理知,AD=AO=2r,∴AO1=根号5r,由勾股定理得,AE2=A
设圆O’的半径x,则OD=O'E=x==>OO'=√2x根据题意知OE=OO'+O'E==>6=√2x+x(OE=AB/2)解此方程得x=6(√2-1)故圆O’的半径6(√2-1).
根号5分之16利用三角形相似性连接EA,则三角形BDO和BAE相似则:BD/AB=OB/BEBD利用勾股玄定理求得是2倍根号5则BE==AB*OB/BD=32/2倍根号5==根号5分之16