如图 圆心O内切于直角三角形ABC 斜边AB与圆心O相切于点D AO的延长线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:55:55
OD垂直于AB,O为圆心,则AD=DB,OE垂直于AC,则AE=EC,所以DE为三角形ABC的中位线所以BC=2DE=2*4=8
连结OP∴∠OCP=∠OPC=∠DCP∴OP//CD∵CD⊥AB∴OP⊥AB∴∴P是弧AB中点
OD平分BC即BE=CE弧CD=弧BD三角形ABC为直角三角形OE平分弧BC
因为,DC切圆心O于点C,所以OC垂直DC,又AD垂直DC.所以OC平行于AD.根据平行线的性质,所以∠BAD=∠BOC.又根据圆周角定理:同弧所对圆周角是圆心角的一半.所以2∠CAB=∠BOC=∠B
做OH垂直于AD,因为DB为切线,所以∠BDO=90度,所以∠ODH+∠BDC=90因为∠CBD+∠BDC=90,所以∠ODH=∠CBD,因为∠C=90,所以三角形BDC与三角形DOH相似\x0d所以
(1)设AH垂直BC于点H,则AH是BC的垂直平分线,所以由OB=OC可知O在AH上又OH垂直BC,BC平行PA,所以OH垂直PA,A又是与圆的交点所以A一定是切点,PA是切线(2)利用△ABC就能求
设半径为R设⊙O与AB切与D点,连接ODAO则∠ODA=90°(OD⊥AB)∵OC=OD=R∴点R在∠BAC的角平分线上∴AO是∠BAC的角平分线∴∠OAC=∠OAD∵∠ACB=∠ODA=90°AO是
相切的.依题三角形ABC为等腰三角形,则AO垂直于BC,所以三角形AOB和AOC及圆O关于AO对称,所以相切
90度证明:因为.圆O与圆G内切于A点,OA是圆O的半径,OH是圆G的直径所以OA,OH在一条直线上,即延长OH交圆O与I点,AI为圆O的直径因为AH⊥BC所以AI⊥BC且平分BC所以三角形ABC为等
证明:∵OA=OB,CD⊥AB∴∠AOD=∠BOD(三线合一)∵OD=OD∴△AOD≌△BOD(SAS)∴AD=BD数学辅导团解答了你的提问,理解请及时采纳为最佳答案.
∵AB是圆的切线,∴OD⊥AB,即∠BDO=90°,又∵△ABC是等腰直角三角形,∴∠B=45°,∴∠BOD=45°,∴∠MND=12∠BOD=22.5°.故答案是:22.5.
R:r=根号2+1
∵OA=OC∴∠OAC=∠OCA又∠OAC+∠ABC=90而∠DCB+∠ABC=90∴∠OAC=∠OCA=∠DCB而CE平分∠OCD则∠ACE=∠OCA+∠OCE=∠BCD+∠DCE=∠BCE则弧AE
连接OT,则OT⊥AB,OT是AB的垂直平分线,可得:|AT|=|TB|=(1/2)|AB|=4;圆环面积=π|OA|²-π|OT|²=π(|OA|²-|OT|²
因为OD⊥AB于D,OE⊥AC于E,OE、OD为弦,所以D为AB中点,E为AC中点,所以DE为三角形ABC中位线所以BC=2DE=16
【只求tan∠ADE】∵AD是⊙O的切线∴∠ADE=∠ABD(弦切角等于它夹的弧所对的圆周角)又∠A=∠A∴△ADE∽△ABD(AA)∴DE/BD=AE/AD=1/2∵BE是⊙O的直径∴∠BDE=90
解∵OB=OH=√2容易知道∠BOH=90°∴BH=2设BHOA的交点是M∴BM=1∴MA=√2-1∴AB的平方=BMF方+MA方=1+(√2-1)方=4-2√2∴AB=√(4-2√2)答1略
连结BE∵AE是直径∴∠ABE=90度=∠ADC又∵∠E=∠C∴三角形ABE与ADC相似∴AE:AC=AB:AD即AB乘以AC=AE乘以AD要给分哦
AE垂直CD,CD//AB=>AE垂直AB,又AB是圆O的直径且A点在圆上=>AE就圆O的切线
(1)略(2)BE=BG+EG=BD+EF,理由是:设FD与AE交于点O,过O做OG⊥DE,∵∠AED=∠ADF,且∠ADF=∠AED∴∠AED=∠AED∴FE=EG又∵弧AB=弧CD∴∠DAB=∠A