如图 在Rt△BAD中 延长斜边BD到点C 使

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:43:02
如图 在Rt△BAD中 延长斜边BD到点C 使
问题补充:如图 已知在RT三角形ABC中,斜边的 中线AD=6,AC=4根号3,求角BAD的正切值

∵斜边的中线AD=6∴BC=12,BD=CD=AD=6∴∠BAD=∠B,∵AC=4√3∴AB=4√6∴tan∠B=AC/AB=√2/2∴tan∠BAD=√2/2

如图,在Rt△ABC中,EF是中位线,CD斜边AB上的中线,求证:EF=CD

证明:∵EF是中位线【已知】∴EF=½AB【三角形中位线等于底边的一半】∵CD斜边AB上的中线【已知】∴CD=½AB【直角三角形斜边中线等于斜边的一半】∴EF=CD【等量代换】

如图,已知Rt△ABC中,D为斜边BC上一点,AB=AD=2,AC=4,求sin∠BAD

由题可知BC=2√5,sin∠B=2√5/5,过A做BD垂线交BD于F,则BF=2√5/5,BD=4√5/5AB=AD∠B=∠BDA,有正弦定理得BD/SIN∠BAD=AD/SINB将AB=2,SIN

已知:如图在Rt△ABC和Rt△BAD中,AB为斜边,AC=BD,BC与AD相交于点E.

证明:在Rt△ABC和Rt△BAD中,AB=BAAC=BD,∴Rt△ABC≌Rt△BAD,∴∠BAD=∠ABC,∴AE=BE.

如图,在Rt△ABC中,CD是斜边AB的高,求证:∠BCD=∠A.

证明:在Rt△ABC中,∠A+∠B=90°(直角三角形两锐角互余),∵CD⊥AB,∴∠CDB=90°,∴∠BCD+∠B=90°(直角三角形两锐角互余),∴∠A=∠BCD(同角的余角相等).

如图,在Rt△ABC中,CD是斜边AB上的中线,角CDB=130度,求角A,角B的度数.

∵在Rt三角形ABC中,CD是AB上中线,∴AD=BD=ABCD=AB∴CD=BD∴∠B=∠DCA又∵∠CDB=130∴∠B+∠DCA=180-∠CDB=50∴2∠B=50∠B=25又∵三角形ABC为

3.如图,等腰Rt△的斜边CE在正方形ABCD的边BC的延长线上,取线段AE的中点M,连接DF.

第一问证明:如图1,延长DM交CE于点N,∵M是AE的中点,∴AM=ME,∵CE在正方形ABCD的边BC的延长线上,∴AD∥CE,∴∠DAM=∠NEM,在△ADM与△ENM中,∠DAM=∠NEM&nb

已知:如图,在Rt△ABC和Rt△BAD中,AB为斜边,AC=BD,BC,AD相交于点E.

(1)证明:∵∠AEC与∠BED是对顶角,∴∠AEC=∠BED,在△ACE和△BDE中,∠AEC=∠BED∠C=∠D=90°AC=BD∴△ACE≌△BDE(AAS),(3分)∴AE=BE;(4分)(2

如图,在Rt△ABC中,CD是斜边AB上的高,CE是斜边上的中线,ACD=B,ACD =ECB ECB =A -EC

如图,在Rt△ABC中,CD是斜边AB上的高,CE是斜边上的中线;求证:∠ACD=∠B,∠ACD=∠ECB,∠ECB=∠A-∠ECD证明:①∵△ABC是直角三角形,∠ACB=90°,∴∠B=90°-∠

已知:如图,在Rt△ABC中,CD是斜边AB上的高.

(1)相等角A=BCDB=ACD三个直角相等(2)相似三角形ABCACDCBD三个三角形相互相似(对应边的关系已给出)原因:三个角对应相等再问:能不能原因再详细一点啊?好的给高分~!谢谢~!再答:楼下

如图,在Rt△ABC中CD是斜边AB上的中线,若∠CDB=60°,则∠B=

∠B=60duRt△ABC中CD是斜边AB上的中线因为Rt△ABC的性质CD=DB中线=2/1AB=DB所以∠DCB=∠B(等腰三角形)=(180-60)/2=60

如图,在Rt△ABC中,CD是斜边AB上的高

证明:角A+角ACD=角BCD+角ACD=90度,得角A=角BCD,在三角形CEF和BMF中,角ECF=BMF=90度,角CFE=BFM,得角E=角FBM,所以,三角形AED与CBM相似,得AE/BC

已知,如图,在Rt△ABC中,CD是斜边AB上的高,

证明:1、∵∠ACB=90∴∠CAB+∠B=90∵CD⊥AB∴∠CAB+∠CAD=90∴∠CAD=∠B∵AE平分∠CAB∴∠CAE=∠BAE∵∠CFE=∠CAD+∠CAE,∠CEF=∠B+∠BAE∴∠

如图,已知:在RT△ABC中,M为斜边AB的中点,D为BC延长线上的一点,∠B=2∠D,求证:CD=1/2AB

在RT△ABC中,因为M为斜边AB的中点所以MC=1/2AB(直角三角形中线定理)即MC=MB所以∠B=∠MCB,又因为∠B=2∠D,所以∠MCB=2∠D,而∠MCB=∠CMD+∠D,所以∠CMD=∠

(2000•河南)如图,在等腰Rt△ABC中,∠C=90°,D是斜边AB上任一点,AE⊥CD于E,BF⊥CD交CD的延长

证明:∵△ABC是等腰直角三角形,CH⊥AB,∴AC=BC,∠ACH=∠CBA=45°.∵CH⊥AB,AE⊥CF,∴∠EDH+∠HGE=180°.∵∠AGC=∠HGE,∠HDE+∠CDB=180°,∴

全等三角形练习题1.已知:如图,在Rt三角形ABC和Rt三角形BAD中,AB为斜边,AC=BD,BC、AD 相交于点E.

(1)在三角形ACB与三角形BDA中AC=BD角CAB=角DBAAB=BA所以三角形ACB全等于三角形BDA.(SAS)所以角ABC=角DAB.因为角CAB=角CAD+角DAB角DBA=角DBE+角E

数学题如图,在平面直角坐标系中,RT△OAB的斜边OA在X轴上,点B在第一象限,

过E作EF⊥X轴于点F,设AO=10m,AB=6m,BO=8m,CD=4m,BE=BC=3m则DE=m,EF=3/5m,DF=4/5m,OF=OD+DF=29/5m,又因EF×OF=3,则有87/25

如图,在Rt△ABC中,∠B=90°,AD平分∠BAC,∠BAD=α,sinα=55

作DE⊥AB于E,如图,∵AD平分∠BAC,∠BAD=α,∴∠CAD=α,DE=DC,在Rt△ACD中,sin∠CAD=sinα=CDAD=55,设CD=5x,则AD=5x,DE=5x,∴AC=AD2