如图 在Rt三角形BMC中斜边BM=5

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 23:58:34
如图 在Rt三角形BMC中斜边BM=5
如图 在rt三角形abc,角acb=90度,cd是斜边ab上

解题思路:根据题意得出每对三角形中的两组内角相等,可得三角形相似解题过程:解:有三对三角形相似,即:△ACD∽△CBD△ACD∽△ABC,△CBD∽△ABC理由:①∵CD⊥AB,&there

如图,在rt三角形abc中,cd是斜边ab上的中线,de是三角形acd的中线,则de平行bc,理由

cd是斜边ab上的中线,de是三角形acd的中线可得AD/AB=1/2AE/AC=1/2还有一个公共角A所以三角形ABC与三角形AD相似.所以角AED=角ACB=90°所以ED⊥ACBD垂直AC所以D

已知,如图,在平面直角坐标系中,RT三角形ABC的斜边BC在x轴上,直角顶点A在y

(1)y=-1/2(x+1)(x-4)(2)AC直线为x+2y-4=0所以根据点到直线的具体公式而且P点在AC直线上方所以P到AC的距离为(m+2n-4)/√(1^2+2^2)S=(m+2n-4)/√

如图,在平面直角坐标系中,rt三角形abo的斜边oa在x轴上,点b在第一象限

参考例题:如图,Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20.(1)求B点的坐标;(2)求过O、B、A三点抛物线的解析式;(3)判断该抛

如图,在RT三角形ABC中,已知斜边AB上的高CD=5.67,BC=7.85,求角B的大小与AC的长度

角B很好求的呀,sinB=CD/BC,sosinB=5.67/7.85,那么角B就可以求得了.AC/BC=tanB,soAC=tanB*BC,前面已经求出角B的大小了,所以AC也可以求出,恩

如图,在RT三角形ABC中,CD,CE分别是斜边AB上的高线和中线,BC=a,AC=b(b>a),若tan∠DCE=1/

答:因为:AC=b>BC=a所以:点D在BE之间根据勾股定理:AB=√(a²+b²)所以:CE=BE=AE=√(a²+b²)/2根据面积相等可以求得斜边AB上的

如图,在Rt三角形ABC中,角ACB=90°,CD为斜边AB上的中线,DE垂直AB,且DE=DC,求证,角ACE等于角B

证明:因为在直角三角形ABC中,角ACB=90度,CD为斜边AB上的中线,所以CD=AB/2,因为DE=DC,所以DE=AB/2,所以三角形ABE是直角三角形,角AEB=90度,因为DE垂直于AB于D

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

如图,Rt三角形ABC中,D为斜边AB上一点,求证:DA=DC

有图没有再问:再答:再答:没事再问:“因为三角形ABC是Rt三角形“可改写成“因为在Rt三角形中“再答:按照你们现在上的课程来讲是要那么写,你就按你说的写也行,

如图在RT三角形ABC中,CD是斜边AB上的高,求证三角形ACD相似三角形ABC

用角角边.因为角A加角ACD等于九十度角A加角B等于九十度所以角ACD等于B又因为角A等于角A且AC等于AC所以根据定理可得相似证明完毕.自己在写点步骤吧连贯一下.

如图,在RT三角形ABC中

半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π

全等三角形练习题1.已知:如图,在Rt三角形ABC和Rt三角形BAD中,AB为斜边,AC=BD,BC、AD 相交于点E.

(1)在三角形ACB与三角形BDA中AC=BD角CAB=角DBAAB=BA所以三角形ACB全等于三角形BDA.(SAS)所以角ABC=角DAB.因为角CAB=角CAD+角DAB角DBA=角DBE+角E

已知 如图 在rt三角形abc中 ,AC=5cm,斜边BC上的高

由题意,AH⊥HC,AH=4,AC=5,所以HC=3设AB=x,三角形面积=1/2xAHxBC=1/2xABxAC所以BH=5x/4-3又三角形ABH中,AB^2=AH^2+BH^2解得x=20/3S

如图,一直在Rt三角形ABC中,CD是斜边AB上的高,∠B-60°,BD=3求AB的长

可能是∠B=60°吧.由斜边上的高是斜边上两部分的比例中项,即CD^2=BD*DA.CD=BD*tan∠B=3*tan∠60°=3√3.∠A=30°.AD=CDctg30°=3√3*√3=9.∵AB=

如图,在Rt三角形ABC中,

求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的