如图 在三角形abc中 点d在ac上,DB等于DC,E是CD的重点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:03:24
∵AB=AC ∴△ABC为等腰三角形 ∴∠B=∠C ∵D为BC中点 ∴BD=CD ∵AB=AC∠B=∠C BD=CD ∴△ABD全等于△ACD(SAS) 2. 
AB=ACD为中点∴AD为△ABC的中垂线AB=ACAD=ADBD=CD△ABD≌△ACD
等腰直角三角形AN=BM,AD=BD,NAD=MBD=45所以NAD全等MBDDN=DMNDM=NDA+ADM=ADM+MDB=90
(1)连接CD,因为等腰RT△ABC,D是斜边AB中点,所以CD=AD=BD=1/2ABCD⊥AB所以∠A=∠ACD=45°又因为AE=CF所以△ADE≌△CDF(SAS)所以DE=DF(2)因为△A
⑴连接CD,∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵D为AB中点,∴AD=BD=CD,CD⊥AB,∠DCA=∠DBC=45°,在ΔDAE与ΔDCF中:DA=DC,∠A=∠DCF=45°
等腰三角形,利用中位线原理可得ef=1/2*AB=adde=1/2*AC=afab=ac得到af=dead=ef所以为菱形
三角形BDE和三角形CFE面积相等我就不解释了.三角形BDE和三角形ADE也是相等的,因为两三角形底相等,AD=BD,且高也相等,都是过E做AB的垂线就是高,根据面积公式就知道底高都相等面积一定相等了
在三角形ABC中,若DE等于2分之一BC,则D,E是三角形ABC的AB,AC的中点再问:判断逆命题的真假,并说出理由再答:再问:你图画错了我要理由再答:以BC为底作一个三角形GBC,做DF=BC取DF
是求S△DEF吗?如下:S△AEF:S△ABC=1/4(△AEF的高和底分别是△ABC的高和底的1/2),同理S△BDE:S△ABC=1/4,S△CFD:S△ABC=1/4,所以S△DEF=(1-1/
逆命题为:在三角形ABC中,若D,E是三角形ABC的AB,AC边上的点,DE等于2分之一BC,则D,E是三角形ABC的AB,AC的中点.此为假命题因为D,E是三角形ABC的AB,AC边上的点,DE等于
因为AD平分角BAC所以角BAD=角DAC又因为D是BC中点所以BD=BC又因为AD是公共边所以三角形ABD全等于三角形ACD所以AB=AC
图呢再问:再答:似乎DBC=BCE没用啊。你只需连接BE,然后在由圆的定理就做出来了。再问:什么是圆的定理再答:再答:P点无论在圆上哪里。APB都是直角。且PO=AB/2再问:再问:这个怎么写再答:啊
在△ECB与△DBC中∵EC=DB(已知)∵∠ECB=∠DBC(已知)∵BC=BC(公共边)∴△ECB≌△DBC(SAS)∴∠EBC=∠DCB(全等三角形对应角相等)∴∠ABC=∠ACB∴AB=AC(
用相似比来做,因为D\E是中点,所以DE是中位线,所以DE比BC就是1:2所以三角形ADE面积比三角形ABC面积就是相似比的平方1:4所以ADE面积是2
首先知道∠cbf=90°,可得到∠abc=45°=∠fbg先证明∠ace=∠adc,可得到∠adc=∠cfb在证明△acd≌△cbf,可得到bf=cd,可得到bf=bd最后利用∠fbg=∠abc=45
貌似我会,你几年级的
证明:1.证明AF=1/2FC在△BCF中∵DG为中位线∴CG=FGBF∥DG在△ADG中∵EF∥DG∴AF:FG=AE:ED∵E是AD中点∴AE=ED∴AF=FG∴AF=FG=CG∴AF=1/2FC
(1)相等,因为直角三角形斜边中线等于斜边一半,故AD=1/2BC=CD=DB(2)等腰Rt△DMN连接AD,∵AN=BM,角NAD=角DBM=45°,AD=BD∴△NAD全等于△MBD(SAS)∴D
①此时,BP=3×1=CQ,BD=5=(8﹣3)=CP,∠B=∠C(已知);∴△BPD≌△CQP.②二△全等需满足:5=BD=CQ=Vt,且4=BP=CP=3t;∴Q运动时间为(4t/3)秒.附:Q速