如图 在三角形abc中,ad,be,cf是3条高,交点为H
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 11:07:47
证明:在BC上截取CE=CA,连接DE,由SAS可判定△ACD≌△ECD,AD=ED∴∠CED=∠A∴∠CED=2∠B∵∠CED=∠B+∠BDE∴2∠B=∠B+∠BDE,∠B=∠BDE∴EB=ED=A
因为AB=AD所以角B=角BDA又因为AD=DC所以角C=角DAC又因为角ADB为三角形ADC外角所以角ADB=角C+角DAC=2*角C所以角B=60度角C=30度即D为BC中点
结果是3△BEC面积是△BAC的一半,即是6(两三角形同底BC,可分别过A、E向BC做高,E为中点,则高的比是2:1,面积同高比)△BEF面积=△BCF面积=½△BEC面积=3(由B做三
做∠AFC平分线FG∵AD,CE为△ABC平分线∴∠BAD=∠CAD,∠ACE=∠BCE∴∠FAC+∠FCA=(1/2)(∠BAC+∠BCA)=60°∴∠AFC=120°∴∠AFE=∠CFD=180°
∠EAD=180°-∠β+∠α如果没错的话应该是这个
(2)FE与FD之间的数量关系为FE=FD,证明如下:过点F分别作FG⊥AB于点G,FH⊥BC于点H,∵∠B=60°,且AD,CE分别是∠BAC,∠BCA的平分线,∴FG=FH,∠2+∠3=60°,∴
延长AD到E,使DE=ADABD全等于CEDCE=3AE=4AC=5所以角AEC=90度DE=2CB=2CD=2倍的根号13
由在△ABC中,AD,BE是两条中线,可得DE是△ABC的中位线,即可得DE∥AB,DE=AB,继而证得△EDC∽△ABC,然后由相似三角形面积比等于相似比的平方,求得答案.∵在△ABC中,AD,BE
应该证明:ab=ac+cd,在AB边取E使AE=AC,连接DE,∵AD平分∠BAC,∴∠EAD=∠CAD,AD为共用边,则△EAD≌△CAD,AE=AC,ED=CD,∠ACD=∠AED,∠AED=∠B
如图∵EF垂直平分AD∴EA=ED∴∠EAD=∠EDA∵AD平分角BAC,即∠BAD=∠CAD又∵∠EDA=∠B+∠BAD; ∠EAD=∠CAE+∠CAD∴∠B=∠EDA-∠BAD=∠EAD
再答:好评哦再问:嗯,谢谢!~
在BC上作CE等于CA,连接DE因为CD平分角ACD所以角ACD等于角DCE(角平分线定义)在三角形ACD与三角形DCE中AC=EC(所作)角ACD=角DCE(已证)DC=DC(公共边)所以三角形AC
∠CAE=∠B理由如下:∵EF垂直平分AD∴EA=ED∴∠EAD=∠EDA∵∠EAD=∠EAC+∠CAD,∠EDA=∠B+∠BAD又∵∠BAD=∠CAD∴∠CAE=∠B
(1)直角三角形,斜边中线等于斜边的一半,周长=DFA+AED=CA+AB=18(2)EF//BC,AD垂直于BC,所以EF垂直于AD
证明:因为角ACD=角B角A=jiaoA所以△ACD∽△ABCAC/AB=AD/AC所以AC²=AD×AB
证明:在DC取点E,使得BD=DE,连接AE∵AD⊥BC,BD=DE∴AB=AE∴∠B=∠AEB∵∠AEB=∠C+∠EAC,∠B=2∠C∴∠EAC=∠C∴AE=EC∴AB+BD=EC+DE=CD∴AB
ADBEBF分别为三角形ABC三角形ABD三角形BCE的中线三角形BCD的面积=三角形ABC的面积的个一半=6三角形BCE的面积=三角形BCD的面积的个一半=3三角形BEF的面积=3
很简单啊BD的垂直平分线交AB于M,BD于N因为MN垂直平分BD所以MB=MD∠B=∠MDB(三线合一)∠AMD=∠B+∠MDB因为角C=2角B所以∠C=∠AMD在△AMD与△ACD中∠C=∠AMD∠