如图 在平面直角坐标系中 四边形odef和四边形ABCD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:12:02
从D作AB的垂线,交AB于M,∴DM=y-1,BC=4,MB=1-x,AM=-7-x∴37=(4+y-1)×(1-x)÷2-(-7-x)×(y-1)÷2化简得到:2x-4y+39=0又2x+5y=22
原题中应该是AP=2根号5吧?∵OA=4,AP=2根号5,∴OP=1∵△AOP∽△APC,∴AO/AP=OP/PC,∴PC=根号5,∵∠APC=∠AOP=90°,∴∠OAP+∠APO=∠APO+∠CP
1、t=2OP=2P坐标(0,2),D坐标(5,0)设PD方程:y=kx+b代入:b=2,5k+2=0,k=-2/5∴直线PD的函数解析式:y=-2/5x+22、找O关于CB直线的对称点O′(8,0)
(1)四边形ABCD为菱形,AB边在x轴上,点D在y轴上,点A的坐标是(-6,0),AB=10,所以OD=8,B(4,0)、D(0,8)、点C的坐标为(10,8);(2)延长PQ交X轴于G点,延长BQ
(1)点B(6,8)(2)△HBP的面积为S是二分之一乘以b的纵坐标乘以po的长,故s=4(10-t);t【0,2】,
1.B(8,6)2.过C做CD⊥OBCD=8,OD=6OH:6=PH:8=(10-5t):10OH=6-3tPH=8-4tBH=4+3tS=PH*BH/2=(4-2t)*(4+3t)=-6t^2+4t
(1)设F点坐标为(0,y),则OF=y,EF=√(DE^2+DF^2)=√(20^2+(40-y)^2),根据OF=EF,有y=√(20^2+(40-y)^2),得80y=2000,即y=25,所以
(1)有两个答案M1(1,0)M2(4,0)(2)实在是很麻烦或者说我不会所以就...
1、根据勾股定理,|OA|=5,则|OC|=5,故C点坐标为(5,0),AC方程为:(y-0)/(x-5)=(4-0)/(-3-5),x+2y=5.2、当在AB边时,|PB|=|AB|-2t=5-2t
1、向右是x+2,向下是y-2,所以得到向量(2,-2).将原坐标加上这个向量就得到四点坐标(略).2、求面积方法有很多,对于本题可以用小学数学的方法:底*高=?
1,y=二分之三x+42,y=二分之三x减23,y=二分之一x+1(ab解析式)4,y=4
这题吗?如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长得速度运动t秒(t大于0),抛物线y=x²+bx+c经过点O和点P,已知矩形ABCD的三个顶点为A(1,0),B
(2).a你做错了当0≤x≤5时P(5-x,0)Q不变(0,10+x)5≤x≤10时P(x-5,0)Q(0,10+x)b.△APQ在运动过程中,其面积始终是AP×OQ/2∵△APQ的面积为32平方单位
如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0〕,C(0,4〕,M是OA的中点,点P在BC边上运动.(1)当PO=PM时,点P的坐标;(2)当△OPM是
设AQ=m,则BQ=4-m,∵∠OPQ=90°,∴∠BPQ+∠CPO=90°,∵∠OCP=∠B=90°,∴∠COP+∠CPO=90°,∴∠COP=∠BOQ,∴ΔCOP∽ΔBPQ,∴CP/BQ=OC/B
过N作ND⊥AB于D,∵ΔOMN是等腰直角三角形,∴OM=MN,∠OMA+∠NMD=90°,又∠AOM+∠OMA=90°,∴∠AOM=∠NMD,又∠A=∠MDN=90°,∴ΔOAM≌ΔMDN,∴MD=
解题思路:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PO,PA.分别求出PD、DC,相加即可.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.