如图 在直角三角形abc中 延长斜边bd到c
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:07:57
利用已知得出∠A=∠DBE,进而利用ASA得出△ABC≌△BDE即可;设AC与BE交于点F证明:在Rt△ABC中,∵∠ABC=90°,∴∠ABE+∠DBE=90°,∵BE⊥AC,∴∠ABE+∠A=90
1、可以看到直角三角形ABE中AG垂直与BE,则有AB的平方=BG*BE(也可用三角形ABE与ABG相似得到),而在等腰直角三角形ABC中可以证明AB的平方=2BD²,得证2、可以证明三角形
证:EF^2=AE^2+BF^2延长ED至G,使DG=DE,连接GF,GB因为DG=DE,DE垂直DF所以GF=EF因为BD=DA,DG=DE,角BDG=角ADE所以三角形BDG全等于三角形ADE所以
1.连接BE,∵AC是切线,所以∠CEF=∠AED=∠ABE,∴∠F=∠BDE,所以BD=BF2.连接OE,设半径为R,△AOE∽△ABC,得OE/BC=AO/AB即R/6=R+4/2R+4,得R=4
证明:在RT△AHG和RT△CEG中:∠AHG=∠CEG=90°∠AGH=∠CGE(对顶角)∴RT△AHG∽RT△CEG(角角)∴∠GAH=∠GCE∵CH⊥AB,△ACB是斜边为AB的等腰RT△∴AH
请给出问题好吗?垂直!且相等!ACB=90°,又是等腰三角形所以AC=BC,CE=CD,DCB=ECA=90°所以全等然后利用对应角相等就能推出垂直了还需要更相似的再说再补充:连接AD交BE于F因为F
(1)在⊿BEC和⊿BDC中,∠EBC=∠DBG,∠FGE=45°=∠C∴∠BDC=∠BEC,即⊿BEC∽⊿BDC∴BD/BG=BE/BC,BG*BE=BD*BC∵D为BC中点,∴BC=2BD又∵⊿A
解题思路:用锐角三角函数、勾股定理求解。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/inclu
是真命题.AB=2BC, ∠A=∠C-∠B=30°.∠C=90°所以三角形ABC是直角三角形.再问:�ش�̫�
连接BD,分别用ASA证明△BDE≌△CDF,△BDF≌△ADE,即可将边CF转换为BE,AE转换为BF,在Rt△BEF中,用勾股定理求得EF=5
好像没图啊?再问:抱歉自己想象吧再答:你题没看错吧
设AC=1,则在等腰直角三角形ABC中,AB=√2,BC=1∴BD=AB=√2tan∠ADB=AC/CD=AC/(BC+BD)=1/(√2+1)分母有理化,得tan∠ADB=(√2-1)/[(√2+1
三个分别是圆外,圆上,圆外,用勾股定理可以算出来AB=5,然后可以算出高CD=2.4再问:额,谢谢啦再答:第三个是圆内…再答:写错了,骚瑞再问:有没有详细一点的呢?再答:勾股定理你应该熟悉吧…再问:嗯
由题意知,AD=AB/2,∠BAC=90°, E,F分别是BC,AC的中点,作EG⊥AB,如下图, 则有∠BGE=∠BAC=90°,∠GBE=∠ABC,由“两角对应相等两三角形相似
连接OE圆O与边AC相切与点EOE⊥ACAO/AB=OE/BC(8+r)/(8+2r)=r/1296+12r=8r+2r²r²-2r-48=0(r+6)(r-8)=0r=8OD/B
BF//AC<F=<ACFCE⊥AD ,<ACB=90° 那么<FAB+<ACF=90°<FAB+<ADC=90°<ACF=<
把△ADC绕点A逆针旋转90度,得到△AD'C'则∠ADD'=45度易证四边形BDD'F是平行四边形所以∠BFD=∠ADD'=45度
∠ACB=60°,∠B=90°,——》BC=AC/2,——》BD=BC+CD=AC/2+AC=3AC/2,——》AC:BD=2:3.
反复运用勾股定理、等量代换就可以了.PA²=(AD+PD)²1PB²=(BD-PD)²2其中AD=BDPC²=CD²+PD²=AD