如图 在菱形abcd中 角b= 60度,动点e在边bc上,动点f在边cd上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:54:08
如图 在菱形abcd中 角b= 60度,动点e在边bc上,动点f在边cd上
如图,在菱形ABCD中,角A=60度,对角线BD=4cm,求菱形的周长

设菱形的对角线AC、BD相交于O点则OB=BD/2=2cm,AC平分角A,则角OAB=30度,且BO垂直于OA所以:AB=2OB=2*2=4cm所以,菱形的周长=4AB=4*4cm=16cm

如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3),B(-4,0

(1)∵菱形ABCD,A(0,3),B(-4,0)∴C(-4,-5)∴经过点C的反比例函数的解析式为y=20/x(2)∵菱形ABCD,A(0,3),B(-4,0)∴D(0,-2)∴S△cod=1/2×

如图,在边长为M的菱形ABCD中,角DAB=60度,E是AD上不同于

设CF=X ,AE=M-X三角形BEF的面积(f(x))=菱形的面积-三角形AEB-三角形bfc-三角形EDF三角形AEB=4分之根号3乘(m-x)的平方BFC=4分之根号3乘mxEDF=4

如图,菱形ABCD中,角B=60度,点E在边BC上,点F在边CD上.(1) 如图(1),若E是

连接AC,AE∵ABCD是菱形∴AB=BC∵∠B=60°∴∠C=120°,△ABC是等边三角形∵E是BC中点∴AE⊥BC∵∠AEF=60°∴∠CEF=30°∴∠CFE=30°∴CE=CFCB=CD∴B

如图.在菱形ABCD中.P是AB上的一个动点(不与A|、B重合)

(1)因为BC=CD,∠BCE=∠DCE,CE=CE,所以△BCE≌△DCE,所以∠BEC=∠DEC=∠PEA,因为∠BAC=∠BCA,所以∠APD=∠CBE;(2)令点D到AB的距离为h,则S△AD

如图,已知在菱形ABCD中.详见补充,

因为菱形ABCD所以AC,BD互相垂直平分且平分一组对角又ON⊥AD,OM⊥BC,OE⊥AB,OF⊥DC所以ON=OM=OE=OF(角平分线性质定理)

已知,如图,在菱形ABCD中,∠BAD=2∠B.求证:△ABC是等边三角形

证明:∵四边形ABCD是菱形∴AD//BC(菱形对边平行)∴∠B+∠BAD=180°∵∠BAD=2∠B∴3∠B=180°∠B=60°∵AB=BC(菱形邻边相等)∴△ABC是等边三角形(有一个角是60°

已知如图,在菱形ABCD中,∠BAD=2∠B求证三角形ABC是等边三角形

人在听么?再问:什么再答: 再答:懂不懂。?再问:第四行写的是什么再答:角BAF等于二倍的角B

已知:如图,在菱形ABCD中,角BAD=2角B.求证:△ABC是等边三角形.

在菱形ABCD中AB=BC,AD∥BC∴∠BAD+∠B=180°∵∠BAD=2∠B∴∠B=180°÷(1+2)=60°∴△ABC是等边三角形

如图1示,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,G在BC上,连接DF,

1.垂直,√3按照小聪的思路作完图之后,GF平行于AB平行于CD,P又是中点,角HDP=角GFP,角HPD=角GPE,P为中点,所以三角形HDP全等于三角形GFP,这样DH=GF,所以CH=CG,则有

如图,在菱形ABCD中,AE垂直BC于点E,EC=1,AE:BC=3:5,求菱形ABCD的周长

因为AE:BC=3:5,所以可设AE=3x,BC=5x,则AB=5x因为AE垂直BC,所以三角形ABE是直角三角形所以可得BE=4x,则CE=5X-4X=X又因为CE=1,所以X=1.AB=5X=5,

如图,在菱形abcd中,ab=2,角dab=60度,

NM垂直ADAM=2再问:能具体点吗?再答:菱形两条对边垂直角dab=60度AM=2AE=AB

如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)B(-4,0)

C点坐标为:(-4,-5)设经过X点的反比例函数解析式为y=k/x则:-5=-k/4求得k=5/4所以:经过点C的反比例函数的解析式为y=5/(4x)(2)设P点的横坐标为m,则P点到AO的距离为|m

如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3),B(-4,0)

只能用用高中方法OB=4,OA=3∴AB=5sin∠ABO=3/5cos∠ABO=4/5sin∠ABC=sin(∠ABO+90°)=cos∠ABO=4/5cos∠ABC=-3/5tan∠ABC=-4/

如图,在菱形ABCD中.

AD//BE,所以△AMD∽△EMB,从而BM/DM=BE/DA;而∠BAF=∠DAE,有公共角∠EAF,所以∠BAE=∠DAF,又∠ABE=∠ADF,AB=AD,所以△ABE≌△ADF,所以BE=D

如图,菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.

(2)连接AC,∵四边形ABCD是菱形,∠B=60°∴AB=BC,∠D=∠B=60°,∠ACB=∠ACF,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,∴∠B=∠ACF=60°,∵AD∥BC