如图 在菱形abcd中,过点B作BE垂直AD,BF垂直CD,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:41:59
如图 在菱形abcd中,过点B作BE垂直AD,BF垂直CD,
如图,在菱形ABCD中,∠DAB=60°,过点C作CE⊥AC且与AB的延长线交于点E.

证明:∵四边形ABCD是菱形,∴DC∥AB,即DC∥AE,又∵AD不平行EC,∴四边形AECD是梯形,∵四边形ABCD是菱形,∵∠BAD=60°,∴∠BAC=12∠BAD=30°又∵CE⊥AC∴∠E=

如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=5,AC=6,过D点作DE品行AC交BC的延长线于点E

因为ABCD是棱形所以BO=OD,AD//BC所以角ADB=角DBC(平行…内错角…),角BOP=角DOQ(对顶角相等)所以△BOP全等于△DOQ(角边角)所以BP=DQ(对应边)

如图,在菱形ABCD中,∠A=60°,AB=4,E是边AB上一动点,过点E作EF⊥AB交AD的延长线于点F,交BD于点M

(1)△DMF是等腰三角形.理由如下:(2分)∵四边形ABCD是菱形∴AB=AD,∵∠A=60°,∴∠ABD=60°,∵EF⊥AB,∴∠F=30°,∠DMF=∠EMB=30°,∴∠F=∠DMF,∴DM

如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=5,AC=6,过D点作DE品行AC交BC的延长线于点E.求△B

在菱形ABCD中AC和BD垂直平分AO=AC/2=3在直角三角形ABO中BO平方=AB平方-AO平方=25-9=16BO=4BD=2BO=8ACED为平行四边形所以CE=AD=AC=5DE=AC=6△

已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.

(1)∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)证明:如图,∵

已知,如图,在菱形ABCD中,F边为BC的中点,DF与对角线ACM,过M作ME⊥CD于点E,

(1)取AD中点为G,连接BG,易知FD平行于BG,四边形BFDG是平行四边形,所以BF=DG.F和G都是边的中点,CF=FB=DG=GA,可知FD和BG把AC分为相等的3段,所以AM=2CM(2)因

已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2

其实不难的额用内错角相等很容易证明三角形CFM与三角形AMD相似,且相似比为1:2,即AM=2CM同时∵∠1=∠2∵∠1=∠ACD,得∠ACD=∠2并且∠MEC=∠MED=90度ME=ME三角形MEC

已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME垂直CD于点E,角1=角2.

)∵四边形ABCD是菱形∴CB=CD,AB∥CD∴∠1=∠ACD,∵∠1=∠2∴∠2=∠ACD∴MC=MD∵ME⊥CD∴CD=2CE=2∴BC=CD=2(2)延长DF,BA交于G∵四边形ABCD是菱形

2、如图,在菱形ABCD中,∠DAB=60°,过点C作CE⊥AC且与AB的延长线交于点E,求证:四边形ABCD是等腰梯形

证明要证明四边形ABCD是等腰梯形,只需证明CE=AD由菱形ABCD,∠DAB=60°,即∠CAB=30°,又有AB=BC即∠BCA=∠CAB=30°即∠CBE=60°又∠CAB=30°,∠ACB=9

如图,在菱形ABCD中,AC、BD交于点O,过点O作OE⊥AB于E.

在菱形ABCD中,AC、BD交于点O∴OA=OC,∠BAO=∠DAO∵OE⊥AB,OH⊥AD∴OE=OH∵AB∥CD,OE⊥AB并反向延长OE交CD于点G∴∠AEO=∠CGO=90°∠BAO=∠DCO

如图,在菱形ABCD中,∠DAB=60°.过点C作CE⊥AC且与AB的延长线交于点E,求证:四边形AECD是等腰梯形

再问:再答:再问:第二问呢再答:等等再答:再问:谢谢啊再答:不用,其实我也是为了中考一整天在百度做数学再问:哦哦

如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=5,AC=6.过点D作DE∥AC交BC的延长线于点E.求△BD

在菱形ABCD中,对角线AC与BD相交于点O,AB=5,AC=6,∴AO=12AC=3,且AC⊥BD,∵OA=3,DO=4∴AD=OA2+OD2=5,BO=4,∴BD=8,∵DE∥AC,且AD∥CE∴

(2011•鞍山)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的

∵四边形ABCD是菱形,∴AB=BC=CD=AD=13,AC⊥BD,OB=OD,OA=OC=5,∴OB=AB2−OA2=12,BD=2OB=24,∵AD∥CE,AC∥DE,∴四边形ACED是平行四边形

如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=5,AC=6,.过点D作DE∥AC交BC的延长线于点E.

(1)在菱形ABCD,AB=BC=CD=AD=5;对角线AC与BD相交于点O,则AC⊥BD,∠AOB=∠BOC=90°;AO=AC/2=6/2=3=OC,BO²=AB²-AO

如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=5,AC=6,过D点作DE‖AC交BC的延长线于点E.

(1)∵菱形ABCD∴△AOD,DOC,OCB,BAO均为全等的Rt三角形∴AO=OCBO=OD又∵AB=5,AC=6∴AO=OC=6/2=3又勾股定理得OB=4∴BD=4×2=8又BC=AB=DC=

已知:如图,在菱形ABCD中,过AB的中点E作EF⊥AC,交AD于点M,交CD的延长线于点F.

(1)证三角形AEM全等三角形DEF,得,AM=DF,因EM//BD,MB//DF,所以四边形FDBM是平行四边形,所以MB=DF,所以AM=MB,即M是AB中点(2)因AD=2DF=4,所以菱形AB

求证四边形是菱形 在平行四边形ABCD中,对角线AC,BD相交于点O,过点O作直线EF垂直BD,分别交AD,B

∵平行四边形ABCD∴ED∥BF∵ED=BF∴四边形BFDE是平行四边形∵EF⊥BD∴∠EOD=∠DOF=90°∴△EOD≌△FOD∴DE=DF∴四边形BFDE是菱形

如图,在菱形ABCD中,对角线交于点o,过点o作eg垂直bc,分被叫ad,bc于点e,g,过点o作hf作ab,分别交ab

因为菱形ABCD中BD平分角ADG因为OH垂直AD,OG垂直CD所以OH=OG因为BD平分角ABC,AC平分角BAD,OE垂直AB,OF垂直BC,OH垂直AD所以OE=OF,OE=OH因为OH=OG所

如图,在菱形ABCD中.

AD//BE,所以△AMD∽△EMB,从而BM/DM=BE/DA;而∠BAF=∠DAE,有公共角∠EAF,所以∠BAE=∠DAF,又∠ABE=∠ADF,AB=AD,所以△ABE≌△ADF,所以BE=D

如图,在菱形ABCD中,∠ADC=120°,过点C作CE⊥AC且与AB的延长线交于点E.

(1)证明:∵四边形ABCD是菱形∴DC∥AB,即:DC∥AE,又AE>AB=DC,∴四边形AECD是梯形.∴∠DAE=180°-∠ADC=180°-120°=60°,∵四边形ABCD是菱形,∴∠CA