如图 在菱形abcd中,顶点A到BC,CD的距离AE,AF都为5

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:12:26
如图 在菱形abcd中,顶点A到BC,CD的距离AE,AF都为5
如图,在菱形ABCD中,角A=60度,对角线BD=4cm,求菱形的周长

设菱形的对角线AC、BD相交于O点则OB=BD/2=2cm,AC平分角A,则角OAB=30度,且BO垂直于OA所以:AB=2OB=2*2=4cm所以,菱形的周长=4AB=4*4cm=16cm

如图在四棱锥P—ABCD中,底面ABCD是菱形,

1、取CD中点M,连结EM、BM,BD,△DAB是正△,DF⊥AB,BM⊥CD,DF//BM,EM//PD,PD∩DF=D,EM∩BM=M,面EMB//面PDF,BE∈面BEM,故BE//平面PDF.

如图,已知菱形ABCD中,∠A=60°,三角板含60°的顶点与点D重合并可以在菱形内部旋转,若三角板的两边与边AB,BC

是定值连接DB易证△ADE≌△BDF易证△DCF≌△DEB∴AE=BFCF=EB即:AE+CF=AE+EB=AB

如图,已知菱形ABCD,其顶点A,B在数轴上对应的数分别为-4和-1,则BC=

:∵菱形ABCD,其顶点A,B在数轴上对应的数分别为-4和1,则AB=1-(-4)=5,∴AB=BC=5.故答案为:5.

(2014•江宁区一模)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函

(1)作DE⊥BO,DF⊥x轴于点F,∵点D的坐标为(4,3),∴FO=4,DF=3,∴DO=5,∴AD=5,∴A点坐标为:(4,8),∴xy=4×8=32,∴k=32;(2)∵将菱形ABCD向右平移

如图,已知在菱形ABCD中.详见补充,

因为菱形ABCD所以AC,BD互相垂直平分且平分一组对角又ON⊥AD,OM⊥BC,OE⊥AB,OF⊥DC所以ON=OM=OE=OF(角平分线性质定理)

如图1,矩形ABCD中,BC=10,点F在AB上,且AF=5,BF=3,菱形EFGH的顶点E、G分别是矩形ABCD的边A

第一题:AE=3,因为⊿AEF≌⊿BCF,第2题AE=4.2,此时第一题⊿AEF≌⊿CGH,设AE=X,EF=√25+X平方,DE=10-X,又因为⊿DEH≌⊿BGH,DH=3,EH=√9+(10-X

顶点在矩形边上的菱形叫做矩形的内接菱形.如图,矩形ABCD中,已知:AB=a,BC=b(a<b)

(1)1.平行线的一个性质就能证明AB//HG2.边上的4个三角形都是全等的,内错角之和180,也能证明HG和EF的平行3.中垂线定理就能证明了(2)EF>HF,AC>EG,所以3的面积大于2,FC>

如图,在菱形ABCD中,∠A=72°,请用三种不同的方法将菱形ABCD分割成四个等腰三角形,标出必要的角度数.

如图所示:设计图案主要根据∠D=108°,由此得到∠A=72°,而108=3×36,72=2×36然后利用菱形的性质即可设计图案.

如图,菱形ABCD中,顶点A到边BC,CD的距离AE,AF都为5,EF=6,那么菱形ABCD的边长为______.

连接AC、BD,AC交EF于点H,∵菱形ABCD,∴AC⊥BD,AD=AB=BC=CD,∵AE=AF,由勾股定理得:DF=BE,∴CF=CE,∴EF∥BD,∴AC⊥EF,∵AE=AF,∴EH=HF=3

如图,已知菱形ABCD,其顶点A,B在数轴上对应的数分别为-4和1,则BC=______.

∵菱形ABCD,其顶点A,B在数轴上对应的数分别为-4和1,则AB=1-(-4)=5,∴AB=BC=5.故答案为:5.

(2012•高安市二模)如图,在下列矩形ABCD中,已知:AB=a,BC=b(a<b),假定顶点在矩形边上的菱形叫做矩形

(1)都是真命题;若选(Ⅰ)证明如下:∵矩形ABCD,∴AD∥BC,∵AH=BG,∴四边形ABGH是平行四边形,∴AB=HG,∴AB=HG=AH=BG,∴四边形ABGH是菱形;若选(Ⅱ),证明如下:∵

如图1示,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,G在BC上,连接DF,

1.垂直,√3按照小聪的思路作完图之后,GF平行于AB平行于CD,P又是中点,角HDP=角GFP,角HPD=角GPE,P为中点,所以三角形HDP全等于三角形GFP,这样DH=GF,所以CH=CG,则有

如图,菱形ABCD中,AB=2,∠C=60°,菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操

第一、二次旋转的弧长和=60π×3180+60π×3180=2×60π×3180,第三次旋转的弧长=60π×1180,∵36÷3=12,故中心O所经过的路径总长=12(2×60π×3180+60π×1

如图,在菱形ABCD中,BD=6,AC=8,求菱形ABCD的周长.

根据菱形的性质AC与BD垂直且互相平分所以OC=(1/2)ACOD=(1/2)BDAC=8BD=6则OC=4OD=3BD与AC垂直,所以,COD值一个直角三角形根据勾股定理OD方+OC方=CD方所以C

如图,在正方形ABCD中,以A为顶点

图在哪证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB

如图 平面直角坐标系中 菱形ABCD的顶角A,D的坐标是(0,0),(3,4),求顶点B,C的坐标.

过D作垂线于x轴,有勾股定理求AD=5,则菱形边长为5,则B点坐标为(5,0),C点坐标为(8,4)

如图,在菱形ABCD中.

AD//BE,所以△AMD∽△EMB,从而BM/DM=BE/DA;而∠BAF=∠DAE,有公共角∠EAF,所以∠BAE=∠DAF,又∠ABE=∠ADF,AB=AD,所以△ABE≌△ADF,所以BE=D

如图,菱形ABCD中,AB=2 ,∠C=60°,菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次

因为菱形ABCD中,AB=2,∠C=60°,所以OD=1,BD=2,AO=√3,第一次旋转60°,O绕A转动60°,经过了√3∏/3,第二次仍然是绕A转60°,又经过了√3∏/3,第三次旋转60°,半

如图,在菱形ABCD中,BD=6,AC=8,求菱形ABCD的周长与面积.

答:菱形ABCD中,对角线AC和BD相互垂直平分因为:BD=6,AC=8所以:BO=DO=BD/2=3所以:菱形面积=三角形ADC面积+三角形ABC面积=AC×DO÷2+AC×BO÷2=AC×(DO+