如图 在菱形abcd中,顶点A到BC,CD的距离AE,AF都为5
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:12:26
设菱形的对角线AC、BD相交于O点则OB=BD/2=2cm,AC平分角A,则角OAB=30度,且BO垂直于OA所以:AB=2OB=2*2=4cm所以,菱形的周长=4AB=4*4cm=16cm
1、取CD中点M,连结EM、BM,BD,△DAB是正△,DF⊥AB,BM⊥CD,DF//BM,EM//PD,PD∩DF=D,EM∩BM=M,面EMB//面PDF,BE∈面BEM,故BE//平面PDF.
是定值连接DB易证△ADE≌△BDF易证△DCF≌△DEB∴AE=BFCF=EB即:AE+CF=AE+EB=AB
:∵菱形ABCD,其顶点A,B在数轴上对应的数分别为-4和1,则AB=1-(-4)=5,∴AB=BC=5.故答案为:5.
(1)作DE⊥BO,DF⊥x轴于点F,∵点D的坐标为(4,3),∴FO=4,DF=3,∴DO=5,∴AD=5,∴A点坐标为:(4,8),∴xy=4×8=32,∴k=32;(2)∵将菱形ABCD向右平移
因为菱形ABCD所以AC,BD互相垂直平分且平分一组对角又ON⊥AD,OM⊥BC,OE⊥AB,OF⊥DC所以ON=OM=OE=OF(角平分线性质定理)
第一题:AE=3,因为⊿AEF≌⊿BCF,第2题AE=4.2,此时第一题⊿AEF≌⊿CGH,设AE=X,EF=√25+X平方,DE=10-X,又因为⊿DEH≌⊿BGH,DH=3,EH=√9+(10-X
(1)1.平行线的一个性质就能证明AB//HG2.边上的4个三角形都是全等的,内错角之和180,也能证明HG和EF的平行3.中垂线定理就能证明了(2)EF>HF,AC>EG,所以3的面积大于2,FC>
如图所示:设计图案主要根据∠D=108°,由此得到∠A=72°,而108=3×36,72=2×36然后利用菱形的性质即可设计图案.
连接AC、BD,AC交EF于点H,∵菱形ABCD,∴AC⊥BD,AD=AB=BC=CD,∵AE=AF,由勾股定理得:DF=BE,∴CF=CE,∴EF∥BD,∴AC⊥EF,∵AE=AF,∴EH=HF=3
∵菱形ABCD,其顶点A,B在数轴上对应的数分别为-4和1,则AB=1-(-4)=5,∴AB=BC=5.故答案为:5.
(1)都是真命题;若选(Ⅰ)证明如下:∵矩形ABCD,∴AD∥BC,∵AH=BG,∴四边形ABGH是平行四边形,∴AB=HG,∴AB=HG=AH=BG,∴四边形ABGH是菱形;若选(Ⅱ),证明如下:∵
1.垂直,√3按照小聪的思路作完图之后,GF平行于AB平行于CD,P又是中点,角HDP=角GFP,角HPD=角GPE,P为中点,所以三角形HDP全等于三角形GFP,这样DH=GF,所以CH=CG,则有
第一、二次旋转的弧长和=60π×3180+60π×3180=2×60π×3180,第三次旋转的弧长=60π×1180,∵36÷3=12,故中心O所经过的路径总长=12(2×60π×3180+60π×1
根据菱形的性质AC与BD垂直且互相平分所以OC=(1/2)ACOD=(1/2)BDAC=8BD=6则OC=4OD=3BD与AC垂直,所以,COD值一个直角三角形根据勾股定理OD方+OC方=CD方所以C
图在哪证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB
过D作垂线于x轴,有勾股定理求AD=5,则菱形边长为5,则B点坐标为(5,0),C点坐标为(8,4)
AD//BE,所以△AMD∽△EMB,从而BM/DM=BE/DA;而∠BAF=∠DAE,有公共角∠EAF,所以∠BAE=∠DAF,又∠ABE=∠ADF,AB=AD,所以△ABE≌△ADF,所以BE=D
因为菱形ABCD中,AB=2,∠C=60°,所以OD=1,BD=2,AO=√3,第一次旋转60°,O绕A转动60°,经过了√3∏/3,第二次仍然是绕A转60°,又经过了√3∏/3,第三次旋转60°,半
答:菱形ABCD中,对角线AC和BD相互垂直平分因为:BD=6,AC=8所以:BO=DO=BD/2=3所以:菱形面积=三角形ADC面积+三角形ABC面积=AC×DO÷2+AC×BO÷2=AC×(DO+