如图 在钝角三角形ABC中 BC=9 AB=17 AC=10

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:09:15
如图 在钝角三角形ABC中 BC=9 AB=17 AC=10
求钝角三角形高的长度如图,三角形ABC中,BC=4,AC=7,高BD=5/2,试作出BC边上的高AE,并求AE的长.

过A做BC延长线的垂线,交点为ES△ABC = AC×BD÷2 = BC×AE÷2∴ 7×5/2 ÷ 2 = 

在△ABC中 为什么 “向量AB乘以向量BC>0,△ABC就是钝角三角形”

只有点乘小于0,才可能是钝角三角形.向量点乘的结果等于他们的长度的乘积乘以其夹角的余弦.如果小于0,余弦小于0,当然是钝角

在三角形abc中角bac等于90度,ae垂直于bc于点e请写出图中的锐角,直角,钝角三角形

钝角ABD锐角ADC直角ABEADEACEABC图中一共六个三角形结束#

如图,钝角三角形ABC中,AM=BM,MD⊥BC,NC⊥BC,若三角形ABC的面积为24,求三角形BND的面积.

连接CM∵⊿CMD与⊿DMN等底等高∴⊿BND的面积等于⊿BCM的面积∵M是AB的中点⊿BND的面积等于12

如图,AE,CP分别是钝角三角形ABC(∠ABC>90°)的高,在CP上截取CD=AB,在AE的延长线上截取AQ=BC,

/>(1)△BDC,△BDP,△QBE,△QAB;(2)AE、CP分别是△ABC的高∴∠ABE=∠CBP(对顶角相等)∴∠1=∠2(等角的余角相等)在△ABQ和△CDB中AQ = 

如图,已知,AF分别是两个钝角三角形ABC和三角形ABE的高,如果AD=AF,AC=AE,求证:BC=BE

因为AD=AF,AC=AE,角ADC=角AFE=90所以RT三角形ADC全等于三角形AFE所以DC=FE又因为在三角形ABD和三角形ABF中AB=AB,AF=AD,角AFB=角ADB所以三角形ABD和

如图,在直角三角形ABC中,∠ACB=90°,AC=BC=8.

设时间为x则面积S=1/2(8-1.5x)2x解得x=2/3(31^0.5-4)其中"31^0.5"为31开方

在钝角三角形ABC中,CB=9,AB=17,AC=10,AD垂直于BC交BC的延长线与点D.求AD的长

运用海伦公式求面积,有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:  S=√[p(p-a)(p-b)(p-c)]  而公式里的p为半周长:  p=(a+b+c)/2带入求得S然后

如图 在△ABC中,DE//FG//BC,AD:DF:BC=1:2;3,BC=10cm

兄台题目错了.检查一下题目,我可以做.再问:把第二个BC改为BF再答:AE:EG:GC=AD:DF:BF=1:2:3(平行线等分线定理)DE:BC=AD:AB=1:6,FH:BC=DF:BD=2:5,

在钝角三角形ABC中,AB=10,AC=21,BC=17.求AC边上的高.

只是给你说方法啊.由余弦定理,三条边都有了,那么你可以得到∠B的、余弦值,那么你也就能够得到∠B的正弦值,然后根据三角形的面积公式,S=1/2absinC,就能够得到三角形的面积,那么就得到高了

如图,在钝角三角形ABC中,CB=9.AB=17,AC=10,AD⊥BC.垂足为D,求AD的长

请拍张清晰的图,这个都看不出图中有钝角三角形

如图,在钝角三角形ABC中,CB=9,AB=17,AC=10,AD⊥BC,垂足为D.求CD的长

设CD=x,在Rt⊿ABD中,17²-﹙x+9﹚²=AD²,在Rt⊿ACD中,10²+x²=AD²,因此17²-﹙x+9﹚

如图,在钝角三角形ABC中,AD⊥BC于D,∠D=90°,AC=10,BC=9,AB=17,求AD的长

设DC=x,那么DB=DC+BC=x+9AD^2=AB^2-BD^2=17^2-(x+9)^2=-x^2-18x+208AD^2=AC^2-CB^2=10^2-x^2=-x^2+100所以-18x+2

在钝角三角形ABC中,若sinA

根据正弦定理(大角对大边),角C为钝角,A,B是锐角.cosC0,cosB>0.可得答案选C!希望对你有用!

△ABC中,角BAC=90°,AE⊥BC于点E,请说出图中的锐角三角形,直角三角形和钝角三角形.

此题有问题吧!这个图一共有四个三角形,都是直角三角形

以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是()

都没错.再问:额怎可能再答:没图你说什么啊亲,再问:是啊

如图,在三角形ABC中,AE=EC,AD⊥BC,EF⊥BC,

相等,延长BE,过A做AG平行于BC交BE于G,延长GA,过B做BH垂直GA于H.在直角三角形BEF中BE=2EF所以∠EBF=30度,AG平行BC,所以∠AGB=∠EBF=30度,所以在三角形BGH

在钝角三角形ABC中,若AB=AC,D是BC上一点,AD把△ABC分成两个等腰三角形,则∠BAC的度数为(  )

设∠ABC为x.(180°-x)÷2+x+2x=180°解得x=36°∴180°-36°×2=108°.故选D.