如图 已知抛物线y=1 4x² 1 2x-2与x轴,y轴交于A,B两点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:38:18
由A(-4,0,)B(1,0)可得y=(1/2)x^2+1.5x-2,当x=0时,y=-2,则C:(0,-2)①当AE=AC时,AE=AC=根号下((-4)^2+(-2)^2)=2根号5,因为A:(-
(1)y=-3x2+12x-8=-3(x2-4x)-8=-3(x-2)2+12-8=-3(x-2)2+4,函数y=-3x2+12x-8的对称轴为x=2,顶点坐标为(2,4).(不用配方法不给分)(2分
∵抛物线y=12x2+bx经过点A(4,0),∴12×42+4b=0,∴b=-2,∴抛物线的解析式为:y=12x2-2x=12(x-2)2-2,∴抛物线的对称轴为x=2,∵点C(1,3),∴作点C关于
(1),∵点A在抛物线y=a(x-1)²-3√3上∴把点A(-2,0)代入,得0=a(-2-1)²-3√3解得,a=√3/3(2)由(1)可得,a=√3/3∴y=√3/3(x-1)
1)将(1,0),(4,3)代人到y=ax²+bx+3,得,a+b+3=0,16a+4b+3=3解得a=1,b=-4所以解析式为y=x²-4x+3 2)点
答:抛物线y^2=2px(p>0)的焦点F为(p/2,0)直线x-my+m=0经过焦点:p/2-0+m=0,m=-p/2再问:好聪明啊,谢谢!
答:1)y=ax^2-8ax+12a=a(x-2)(x-6)与x轴交点A(2,0)和B(6,0)设点P为(0,p),p>0依据题意:点C为(3,p/2)因为:∠PBO=45°所以:直线PB的斜率k=-
(1)二者的底相同(DE),只需其上的高相等即可,即CP与DE平行。CP的斜率也是2,C(0,-4),CP的方程为y=2x-4(点斜式)y=2x-4=x²+3x-4x=-1(另一解x=0为点
(2)②先求出顶点(2,-10),然后设(2-a,-10+√3a)代入解析式解方程即可(3)设抛物线Y=a(X-m)²+n当a<0时又∵C(m-b,n-√3b)代入自己解得一个答案当a>0时
求采纳! 我也很辛苦
写大概思路行吗?4题都要写?再问:第四题再答:ED的长度为Y,可是DE怎么表示?不妨看成ED=EN-DN,ON一段是X也是E点的横坐标。先看EN是在一元二次函数上的一点,那我可以带进函数里,当ON为X
(1)设L2的解析式为y=ax2+bx+c由题意,得c=2,-b/2a=1,a=-1所以b=2所以y=x2+x+2y=-x2+x+2=-(x-1/2)2+9/4所以抛物线的对称轴为x=1/2设L3的顶
关于y轴对称时偶函数∴令y=y,x=-x∴y=2/3x2-16/3x+8
(1)根据题意得(m-3)2-4•(-m)1=3,解得m1=0,m2=2,即m为0或2时,抛物线与x轴的两个交点间的距离是3;(2)∵△=(m-3)2-4•(-m)=m2-2m+9=(m-1)2+8>
图呢,题呢?再问:唉。。。我准备问度娘了再答:建议你用http://www.jyeoo.com/可信,标准再问:谢谢啊
(1)因为A(3,0)在抛物线y=-x2+mx+3上,则-9+3m+3=0,解得m=2.所以抛物线的解析式为y=-x2+2x+3.因为B点为抛物线与x轴的交点,求得B(-1,0),因为C点为抛物线与y
∵点A的横坐标为-1,∴y=12×(-1)2=12,y=-14×(-1)2=-14,∴点A(-1,12),B(-1,-14),∴AB=12-(-14)=34,根据二次函数的对称性,BC=1×2=2,阴
易得:A(1,0)、B(6,0),C(0,4),顶点坐标:(7/2,-25/6),S=1/2OA*|2/3X^2-14/3X+6|=-1/3X^2+7/3X-3(1再问:是否存在点E,使△OEA为等腰
C(0,-3),y(0)=c=-3,y(-1)=1-3+b(-1)=0,b=-2y=x^2-2x-3=(x-1)^2-4,顶点(1,-4)D(m,m^2-2m-3),BC直线:x-y-3=0D到Bc的
假设B是函数平移后与X轴的右交点△ABD是等边三角形,则OD=√3OB设函数Y=-X²向上平移后解析式为:Y=-X²+C此时函数与X轴交点,代入Y=0X=±√C因为C大于O,因此O