如图 抛物线y ax的平方 c(a不等于0)与y轴交于a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:27:39
如图 抛物线y ax的平方 c(a不等于0)与y轴交于a
如图,正方形ABCD的两个顶点D、A在x轴上,且在抛物线与x轴两交点之间,另两个顶点B、C在抛物线y=8-x的平方

设B(x,8-x^2)(x>0)AO=xAD=2xAD=AB2x=8-x^2x^2+2x-8=0(x+4)(x-2)=0x=2边长为4面积4*4=16

如图,抛物线y=-x平方+bx+c与x轴交与A(-1,0)B(-3,0)两点求该抛物线解析式该抛物线

按图抛物线应与x轴交于(1,0),(-3,0)y=-x²+bx+c=-(x-1)(x+3)=-x²-2x+3=-(x+1)²+4C(0,3),D(-1,4)对称轴:x=-

如图,抛物线y=ax平方+bx+c与x轴相交于两点A(1,0),B(3,0)与y轴相交于点C(0,3).(1)求抛物线的

1)由已知得,a+b+c=09a+3b+c=0c=3解之得a=1b=-4c=3∴y=x2-4x+3;(2)∵D(7/2,M)是抛物线y=x²-4x+3上的点,∴M=5/4∴S△ABD=5/4

如图,抛物线y=-x的平方+2x+3与x轴分别交于A,B两点,与y轴的正半轴交于C点,抛物线的顶点为D,连接BC,BD,

令Y=0,则X1=-1,X2=3所以A(-1,0)、B(3,0)令X=0,则Y=3所以C(0,3)D点横坐标为X=-2/(-2)=1,代入X=1,Y=4所以D(1,4)设直线BD解析式为Y=KX+B,

如图,已知抛物线y=ax平方+bx+3(a不等于0)与x轴交于点A(1,0)B(-3,0)与y轴交于点C 求此抛物线的解

我做了.不知道对否啊.凑合点吧.y=ax平方+bx+3与x轴交于点A(1,0)B(-3,0)将x=1和x-3分别带入得关于a,b二元一次次程a+b+3=09a3b+3=0解得:a=-1,b=-2带入原

如图,抛物线y=-x平方+2x+3与x轴相交于A,B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与

这个题不是很难,主要考查了待定系数法求解析式,二次函数的交点,顶点坐标,对称轴,以及相似三角形的判定及性质,求得三角形相似是本题的关键做出来这一步,这个题就迎刃而解了,答案http://www.qiu

如图,抛物线y=-x的平方+bx+c与x轴交于A(1,0),B(-3,0)两点.(1)球该抛物线的解析式.

(1)抛物线y=-x的平方+bx+c与x轴交于A(1,0),B(-3,0)两点,所以0=-1+b+c,0=-9-3b+c,解得b=-2,c=3,y=-x的平方-2x+3.(2)令抛物线中的x=0,则y

如图,抛物线y=a(x的平方)+bx+c经过点A(4,0),B(2,2),连接0B,AB

数学语言不好打字,这是答案和解析的网址.祝学习愉快咯~

如图,已知抛物线y=ax的平方+bx+c经过A(-1,0),B(3,0),直线BC经过B,C两点.

⑴抛物线经过A、B、C得方程组:c=-3,a-b+c=09a+3b+c=0解得:a=1,b=-2,c=-3,∴抛物线的解析式为:Y=X^2-2X-3.⑵直线BC的解析式为:Y=X-3,过P作BC的平行

如图 抛物线y=-x的平方+2x+3 交x轴于AB两点 (A在B的左侧)交y轴于点C 顶点为D.抛物线上有一点使∠PBA

答:y=-x²+2x+3=0x²-2x-3=0(x-3)(x+1)=0x=-1或者x=3点A(-1,0),点B(3,0),点C(0,3),点D(1,4)BC斜率Kbc=-1,CD斜

如图 已知抛物线y=ax的平方+bx+c经过a(-1,0)、b(3,0)、c(0,3)

(1)过C(0,3),c=3与x轴交于(-1,0),(3,0),可表达为y=a(x+1)(x-3)其常数项为-3a=c=3,a=-1y=-(x+1)(x-3)=-x²+2x+3(2)根据图,

如图抛物线y=ax的平方+bx+c(a>0)与x轴交于A(1,0),B(5,0)两点,与y轴交于点M,抛物线顶点为P,且

1)过P作PQ⊥x轴,Q为垂足则Q点坐标为(3,0)|BQ|=5-3=2所以,|PQ|=√(PB^2-BQ^2)=√(20-4)=±4a>0,开口向上,所以,P在x轴下方,所以,P点坐标为:(3,-4

如图,抛物线y等于负x的平方加bx加c与x轴交于a,b两点 求该抛物线的解析式?

1)将A(1,0),B(-3,0)代入,得,-1+b+c=0,-9-3b+c=0,解得b=-2,c=3所以抛物线为y=-x²-2x+32)△ACQ的周长为CQ+AQ+AC,其中AC不变所以当

如图,已知抛物线y=-x的平方加bx加c经过点a(-1,0)和c(4,0) 1,求

1)将A(-1,0)、B(4,0)分别代入y=-x²+bx+c得:          &n

如图,抛物线y=x²-(a+b)x+c平方/4,其中a.b.c分别是三角形ABC的角A角B角C的对边

根据抛物线的对称轴为x=(a+b)/2=a,得a=b.设E点横坐标为XE,F点横坐标为XF,则S△MNE:S△MNF=|ME|:|MF|(两三角形高相等)=XE:XF(过E点做OF平行线,做出该线与y