如图 抛物线y x的平方=4x 3交x轴于A,B两点(A在B左侧),交Y轴于点C
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:59:11
按图抛物线应与x轴交于(1,0),(-3,0)y=-x²+bx+c=-(x-1)(x+3)=-x²-2x+3=-(x+1)²+4C(0,3),D(-1,4)对称轴:x=-
A(4,0)B(0,4)直线AB解析式为y=-x4.P点x范围:0
由y=-x²-2x+2,令x=0,得y=2,所以C点坐标为(0,2)又y=-x²-2x+2-(x²+2x-2)=-(x+1)²+3得抛物线的顶点坐标为(-1,3
=1-3=-2-c=1x(-3)=-3,c=3所以该抛物线的解析式为y=-x^2-2x+3
令Y=0,则X1=-1,X2=3所以A(-1,0)、B(3,0)令X=0,则Y=3所以C(0,3)D点横坐标为X=-2/(-2)=1,代入X=1,Y=4所以D(1,4)设直线BD解析式为Y=KX+B,
我做了.不知道对否啊.凑合点吧.y=ax平方+bx+3与x轴交于点A(1,0)B(-3,0)将x=1和x-3分别带入得关于a,b二元一次次程a+b+3=09a3b+3=0解得:a=-1,b=-2带入原
(1)设直线解析式为y=kx+c,由其过点P﹙0,-2﹚M﹙1,﹣1﹚所以c=-2,1K-2=﹣1,K=1,所以直线的解析式是Y=X-2抛物线过点M﹙1,-1﹚,所以a=﹣1,抛物线为Y=X²
2)(此处题目有问题,不知道E点是什么,暂时按D点来算了)已知A(4,0),C(0,4)显然抛物线的对称轴为:x=3/2,注意AC长度一定,所以三角形周长的最小点对应AD+CD之和的最小点,注意A和C
令y=0,的x=4或-2(舍去),故A(4,0)同理令x=0得y=4,故B(0,4).则直线ABx+y-4=0.(2)由题可得,要使直线AB与该正方形相加,只需直线AB与线段PQ有交点,(lz学过线性
A(4,0)B(0,4)AB的解析式y=-x+4(2)2《=x《=4
y=x平方—2x—3=(x-1)^2-4顶点坐标(1,-4)
答:y=-x²+2x+3=0x²-2x-3=0(x-3)(x+1)=0x=-1或者x=3点A(-1,0),点B(3,0),点C(0,3),点D(1,4)BC斜率Kbc=-1,CD斜
1.∵y=ax²+2x的对称轴是直线x=3,∴-2/2a=3a=-1/3∴y=-1/3x²+2x当x=3时y=-1/3*3²+2*3=3∴A(3,3)2.令对称轴与x轴交
答:抛物线y=-x²+4x-3=-(x²-4x+3)=-(x-1)(x-3)与x轴的交点A(1,0),B(3,0)抛物线开口向下,对称轴x=(1+3)/2=2,顶点(2,1)与y轴
抛物线y=a(x-1)^2+4与x轴交于A(1-√(-4/a),0),B(1+√(-4/a),0),顶点D(1,4),对称轴与x轴交于E(1,0),由AB=DE得2√(-4/a)=4,∴-4/a=4,
1)过P作PQ⊥x轴,Q为垂足则Q点坐标为(3,0)|BQ|=5-3=2所以,|PQ|=√(PB^2-BQ^2)=√(20-4)=±4a>0,开口向上,所以,P在x轴下方,所以,P点坐标为:(3,-4
1)将A(1,0),B(-3,0)代入,得,-1+b+c=0,-9-3b+c=0,解得b=-2,c=3所以抛物线为y=-x²-2x+32)△ACQ的周长为CQ+AQ+AC,其中AC不变所以当
x=0.5p,AB最小=2√p再问:�ס�����Ҫ��̣�лл��
求△=-16a因为有ab两交点所以a