如图 正方形abcd的对角线ac bd交于点o 延长cb至点f 是cf=ca
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:30:25
证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE
这题是做对称点以AC为轴做点D的对称点F易证 点F与点B重合所以 DP = BP所以 DP + 
第一问由全等易得ME=MF第二问由M点作MG丄AD,MH丄AB角GMH=360-90-90-角BAD=180-角BAD=角EMF角HMF+角EMH=角EMF=角GMH所以角HMF=角GMH-角EMH=
第一问楼主会了,我就不写了.第二问:作PQ⊥AD于Q,所以PFDQ是矩形DF=PQ=sin∠PAQ*PA=sin45°*PA=√2/2*PA由第一问结论知DF=EF所以EF=√2/2*PACF=sin
证明:∵ABCD正方形,∴∠DOF=∠COE=90°,OD=OC,∴∠OCE+∠OEC=90°,∵DG⊥CE,∴∠ODF+∠OEC=90°,∴∠OCE=∠ODF,∴ΔOCE≌ΔODF,∴OE=OF.
简单因为OBC和OCD为等腰三角形E为BC中点所以角OEC=90所以角OFC=360-270=90因为OCD与等腰三角形三线合一,F为CD中点
因为AC,BD为正方形ABCD的对角线则AC⊥BDAO=CO角BAC=45º因为EG⊥AC三角形AEG为等腰直角三角形AG=EG因为EF⊥BD所以EFOG为矩形EF=OG因此EG+EF=OG
使P点是BE与AC的交点则可,这时PE+PD[(最小值)]=BE=AB=√(12)=2√(3),证明:连接BD,则AC是BD的垂直平分线,∴PD=PB,∴PD+PE=PB+PE=BE,在AC上任取异于
这题是做对称点以AC为轴做点D的对称点F易证 点F与点B重合所以 DP = BP所以 DP + 
∵ABCD是正方形∴AC⊥BD AB=AD=A=BC=CD=√10∵△ABE是等边三角形∴AB=BE=AE=√10要使PD+PE的和最小以AC为对称轴,做D的对称点,由于BD⊥AC所以D的对
不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+
先证明三角形ADN与三角形CBM全等得到DN=BM又有BM⊥AC,DN⊥AC所以DN//BMDN与BM平行且相等,所以是平行四边形
解题思路:根据正方形的性质求解解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/re
拜托哪里来的F
楼主要自己画一下图啊,我以前画了好几次图上传的时候都不成功,浪费表情.其实画一下图就很明白了,数形结合是一种很重要的数学思想啊,尤其是几何,一定要多画图.因为AE平分∠BAC,EF⊥AC,所以BE=E
提示:先证明△BPC≌△DPC得到PB=PD=PE作PM⊥BC于M,PN⊥CD于点N再证△PEM≌△PND可得(1)PD=PE(2)PD⊥PE
∵ABCD是正方形,AC是对角线∴∠BCA=45°作EF垂直AC ∵AE 是∠BAC角平分线∴∠BAE=∠FAE∵AB⊥BC,ET⊥AC,AE=AE∴△ABE全等于△AFE∴BE=
不变作OP⊥BC,作OQ⊥CD,证得△OPM≌△OQNS四边形OMCN=S△OQN+S四边形OMCQ=S△OPM+S四边形OMCQ=S正方形OPCQ=1/4S正方形ABCD=1/4*4*4=4
(1)证明△MEB≌△MFC,用ASA(2)ME=½MF,至于方法嘛,我蒙的.另外请问你是多大的学生啊再问:初三再答:好吧,你们那边的初中生进化了......汗颜啊