如图 正方形abcd的边长为4cm,剪去四个角后成为一个正八边行

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 22:06:00
如图 正方形abcd的边长为4cm,剪去四个角后成为一个正八边行
如图,已知正方形ABCD的边长为4,对称中心为点P,

再问:对称中心是什么?再答:

如图,已知正方形ABCD的边长为4,折叠正方形ABCD,使顶点C与AB边的中点M重合,求折痕EF的长度

设CF=MF=X,BF=4-X,MB=2MB^2+BF^2=MF^24+(4-X)^2=x^24+X^2-8X+16=x^2x=2.5连结MC交EF于N,延长FE,CD交于Ptan∠CPF=tan∠F

如图:ABCD是边长为4的正方形,A、C为圆心作弧,求阴影部分的面积

4×4×3.14×1/4×2-4×4×1/2×2=9.12(1)4×4×3.14×1/4把C点看作圆心,以它为圆心画了一个1/4圆,这一步求的这个1/4圆的面积,因为以A点为圆心也画了一个这样的圆,所

如图,正方形ABCD的边长为a,正方形DEFG的边长为12a,将阴影部分划分为4个全等的部分.

如图:由将阴影部分划分为4个全等部分的每个面积=14×(正方形ABCD的面积-正方形DEFG的面积)=316a2,即3个小正方形的面积.

如图,正方形ABCD和正方形OEFG的边长均为4,O是正方形ABCD的旋转对称中心,则图中阴影部分的

当OE垂直AB或OE过B点时,易知阴影部分的面积=1/4a².作为一般情况,因OE与OG的移动情况完全相同,必有OH=OK,HB=KC,又OB=OC,所以△OHB≌△OKC,故二者面积相等.

如图,在正方形ABCD中,对角线2倍根号2,则正方形的边长为?

设正方形的边长为x,则x²+x²=(2√2)²2x²=8x²=4x=2所以正方形的边长为2

已知(如图):正方形ABCD的边长为b,正方形DEFG的边长为a.

(1)梯形ADGF的面积=12(GF+AD)×GD=12(a+b)•a=a(a+b)2(2)三角形AEF的面积=12×AE•EF=a(b-a)2(3)三角形AFC的面积=S□ABCD+S□AFGD-S

如图,正方形ABCD与正方形BEFG,点C在边BG上,已知正方形ABCD的边长为a,正方形BEFG的边长为b,用a,b表

(1)根据题意得:△CDE的面积为12a2;(2)根据题意得:△CDG的面积为12a(b-a)=12ab-12a2;(3)根据题意得:△CGE的面积为12b(b-a)=12b2-12ab;(4)根据题

如图,正方形ABCD的边长为4厘米,P、Q两动点从正方形ABCD的顶点A同时沿正方形的边开始移动

1、P、Q相遇,说明两点走的路程相加是正方形的周长.即t+4*t=16,t=3.2s2、一次相遇是走过了一个正方形周长,4次相遇就是4个正方形的周长.即(1+a)*16=4*16,a=33、第2013

如图,正方形ABCD的边长为4,正方形OEFG的边长为6,O是正方形ABCD的对角线交点,则图中阴影部分面积为4

晕可以将oc连接,看不是分割成两部分了吗?由于o是正方形ABCD的对角线交点,设oe交bc于h,og交cd于j,obh等于ocj,那么图中阴影部等于三角形obc(即正方形ABCD的4分之一)啊懂了吧?

如图2边长为6的正方形abcd,绕点c顺时针旋转30°后,得到正方形efcg,

dh=3过f做cd的垂线交cd于o∵cf=6角fcd=60°∴co=3∴do=3∴角ofd=30°∴角dfe=30°∴fd是角ofe的平分线∴hd=do=co=3

如图,正方形ABCD的边长为1,CE=AC,求点C到AE的距离

设E点在BC的延长线上,连接AE、AC.角ACE=角ACD+角DCE=45度+90度=135度.过C点作CF垂直AE于E点.在Rt△AFC中,CF=AC*sinCAFC因AC=根号2,角CAF=90-

如图,在六面体ABCD-A1B1C1D1中,四边形ABCD是边长为2的正方形,四边形A'B'C'D'是边长为1的正方形,

 如图,⑴  E.F是CD,DA的中点,A1D⊥D1D  FD⊥D1D A1D,FD共面,∴A1D∥=FDA1D1DF是矩形,A1F∥=D1

已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,

OA=OD=AD/sqrt(2),D(0,2sqrt(2))如图,PED-PFA全等,PEOF为正方形,PO平分DOF当A接近O时,PE接近1/2AB,当A接近F时,PE接近PD,所有范围是1/2AD

如图,正方形ABCD和正方形CDEF的边长分别为a,a/2.

左边梯形ABCG面积为3/4a^2右边三角形GCE面积1/8a^2三角形ABE面积3/4a^2所以,阴影面积为1/8a^2

如图,已知正方形ABCD的边长是4,对角线AC、BD相交于点O,另一个边长也为4的正方形OEFG,两个正方形重

不变作OP⊥BC,作OQ⊥CD,证得△OPM≌△OQNS四边形OMCN=S△OQN+S四边形OMCQ=S△OPM+S四边形OMCQ=S正方形OPCQ=1/4S正方形ABCD=1/4*4*4=4

分可以加!如图,四边形ABCD为边长是a的正方形,分别以点A、B、C、D

如图,过E作EI⊥CD于I则EI=1/2AD=1/2EC∴∠ECD=30°同理,∠FCB=30°∴∠ECF=30°∴弧EF=30°/180°*π*a=1/6aπ∴阴影部分周长为2/3aπ

如图,正方形ABCD与正方形BEFG,点C在边BG上,已知正方形ABCD的边长为a,正方形的边长为b.用a、b表示下列面

因为AE平行于CD,所以E到CD的距离等于A到CD的距离,即a所以三角形CDE的面积等于1/2CD乘高,即1/2a*a三角形DEG的面积等于三角形CDE+CDG+CEG的面积和三角行CDG的面积等于1