如图 点d是等边三角形abc的边ab上一点,以CD为一边向上作等边△EDC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:57:03
如图 点d是等边三角形abc的边ab上一点,以CD为一边向上作等边△EDC
如图,三角形ABC是等边三角形,D,F分别是BC,AB上的点,且CD=BF,以AD为边作等边三角形ADE.

点D在BC中点时,四边形CDEF是平行四边形,且∠DEF=30°证明:∵设点D在BC中点∴AD是△ABC的中线∴AD平分∠BAC又∵△ABC是等边三角形∴∠BAD=∠CAD=1/2∠BAC=30°∵C

已知,如图,△ABC是等边三角形,点D,E,F分别是边AB,BC,CA的中点.求证 △DEF是等边三角形

∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF

如图,三角形abc是等边三角形,d,F分别是bc,ac的中点,以ad为边作等边三角形ade,连接ef

(1)是平行四边形.证明如下:∵D,E分别是BC,AC的中点,∴BF=AD,∠FBD=30°,∠ADB=90°,又∵△ADE是等边三角形,∴∠ADE=60°∴∠FBD+∠ADB+∠ADE=180°∴B

D是等边三角形ABC的边AB上一点,AE∥BC,且AE=BD.求证:△CDE是等边三角形

过D作DF//AC,交BC于F,因为三角形ABC是等边三角形.所以,三角形BDF也是等边三角形所以,在三角形AED和三角形FDC中,AE=BD=DF

已知:如图,三角形ABC是等边三角形,点D,E,F分别是边AB,BC,CA的中点.:三角形DEF是等边三角形

∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF

如图,△ABC为等边三角形,D.F分别是BC、AB上的点,且CD=BF,以AD为边作等边三角形ADE

1、在△ACD和△CBF中CD=BF∠C=∠B=60°AC=BC∴△ACD≌△CBF(SAS)2、1)四边形CDEF为平行四边形,理由如下设AB与ED交于G∵△ABC为正三角形∴AC=BC,∠B=∠A

如图,D是等边三角形ABC的边AB上的一动点,以CD为一边向上做等边三角形EDC,连接AE,求证:ae平行bc

思路:如果AE平行BC,那么角EAC=角BCA=60度只需证明三角形EAC=三角形DBC由边角边定理,BC=AC,DC=EC,角BCD=角ACE=60度-角ACD,得证.再问:能写出过程吗再答:证明:

如图,已知△ABC是等边三角形,D为边AC的中点,AE⊥EC,BD=EC,请判断△ADE是不是等边三角形,并说明理由.

可设三角形ABC边长为1,BD,CE为二分之根号3,又因为ACE是直角三角形,DE为斜边平分线,DE为二分之一AC,也就是二分之一,又因为直角三角形,由勾股定理,AE为二分之一,AD=AE=DE再问:

如图 已知等边三角形abc中,d是边bc上的任意一点,以ad为边构造等边三角形ade,联结ce

∵△ABC为等边三角形∴AB=AC,∠BAC=60°∵四边形ADEF是菱形∴AD=AE∵∠DAF=60°=∠DAC+∠CAE∠BAC=60°=∠BAD+∠DAC∴∠CAE=∠BAD∴△ABD全等于△A

三角形abc是等边三角形,d、e分别是cb、ac上的点,且bd=ce,以ad为边作等边三角形adf,连接ef,

1.我的思路是,由题设不难证三个三角形ABD,BCE,ACF全等,进而知三角形CEF为正三角形,进而知四边形BDFE的两组对边相等,即四边形BDFE为平行四边形,故BE平行DF.BE=AD=DF=AF

如图,三角形abc是等边三角形,d.e分别是bc,ac的中点,以ad为边作等边三角形ade,连接ef

四边形BDEF是平行四边形,通过角度的计算结合全等可以得到S△ABC:S四边形BDEF=1:2

如图,△ABC是等边三角形D,E分别是BC,CA上的点,且BD=CE,以AD为边作等边三角形ADF.求证:

先证明△ABD≌△BCE因为AB=BC∠ABC=∠ACB=60°BD=CE所以AD=BE又等边△ADF所以AD=DF所以BE=DF因为△ABD≌△BCE所以∠BAD=∠CBE∠ADB=∠BEC∠C=∠

已知三角形ABC是等边三角形,D,E分别是BC,AC上的点,且BD=CE,以AD为边在AC一侧作等边三角形ADF.

1、∠BAD+∠DAC=∠DAC+∠CAF=60∠BAD=∠CAF而边AB=AC,AD=AF,三角形ABD相似于ACF,CE=BD=CF,角ABD=ACF=60三角形CEF为正三角形2.边BC=BA,

如图,三角形ABC为等边三角形,D,F分别是BC,AB上的点,且CD=BF,以AD为边作等边三角形ADE

1,在△ACD,△CBF中CD=BF∠C=∠B=60°AC=BC∴△ACD≌△CBF(SAS)2,当D在线段BC上的中点时,四边形CDEF为平行四边形,且角DEF=30度按上述条件作图连结BE,EF在

△ABC为等边三角形,D、F分别是BC、AB上的一点,且CD=BF,以AD为边作等边三角形ADE.

(1)证:AC=CB∠ACD=∠CBF=60°CD=BF根据边角边定理.就全等了(2)AD=DE由①问得AD=CF∴FC=DE四边形CDEF为平行四边形且对角线还相等那么CDEF只能是矩形∴△BDF为

等边三角形ABC,D、F是BC、AB上的点,且CD=BF,以AD为边作等边三角形ADE,求证:四边形CDEF是平行四边形

因为CD=BF所以,AF=BD∠BAD=∠CAFBA=CA所以,△BAD≌△CAF所以,AD=CF而由等边三角形ADE知:AD=DE所以,DE=CF∠BCF=∠BCA-∠CAF=60-∠CAF=60-

如图,在等边三角形ABC,点D是BC边的中点,以AD为边作等边三角形ADE,求∠CAE的度数.

∵△ABC是等边三角形,D是BC的中点∴∠ABC=60°,∠CAD=30°∵△ADE都是等边三角形∴∠DAE=60°∴∠CAE=60°-30°=30°