如图 点g是三角形abc的重心 过g作ge平行ab
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:34:10
延长CG交AB于K,∵G是重心,∴CG/GK=2,即CG/CK=2/3,又MN//AB,∴MN/AB=CG/CK,即MN/5=2/3,MN=10/3(如果没学过重心性质,要证CG/GK=2,就连BG延
=0重心是三边中线的交点,延长GA交BC于O,再延长至P,得OP=GO根据中线的性质,GA=2GO,得GA=GP连接BP,CP得BOCP是平行四边形得题中等式=0
用极限法可以求出也可以用特殊形法
设AM是AB边上的中线,延长AM至D,使MD=AM,AD=2AM,向量AD=向量AB+向量BD,以下通为向量,2AM=AB+BD,AM=(AB+BD)/2,BD=AC,AM=(AB+AC)/2,AG=
取BC中点D,连结并延长GD至E,使DE=GD,则四边形BGCE是平行四边形∴向量GB=向量CE∴向量GB+向量GC=向量CE+向量GC=向量GE由向量GA+向量GB+向量GC=0得:向量GB+向量G
这道题应该根据PG和PQ共线来解PG=PA+AG=OA-OP+AC=-am+1/3a+1/3bPQ=OQ-OP=nb-ma∴PG=μPQμ·(nb-ma)=-am+1/3a+1/3bkn=1/3.①k
因为BC//平面α,且平面ABC∩α=MN,所以BC//MN,则三角形AMN相似于三角形ABC,因此,若设直线AG与BC交于D,则AG:AD=2:3,所以由MN:BC=AG:AD=2:3得MN=2/3
解析:有结论:若△ABC的中线为AD,重心为G,则AG:GD=2:1,此结论可用向量法和普通平面几何法等进行证明,不再赘述.第一题:1、直角三角形斜边的中线等于斜边的一半,结合以上结论,得GC=(2/
∵G是三角形的重心,且AD是BC边上的中线,∴AG:GD=2:1,AG:AD=2:3,∵EF∥BC,∴AF:FC=AG:GD=2:1,EF:BC=AF:AC=AG:AD=2:3.
第(1)问简单,不多说,第(2)问发了图片
解:点G为三角形ABC的重心,则DG/GA=1/2,DG/DA=1/3.GE平行AB,则⊿DGE∽⊿DAB.则S⊿DGE/S⊿DAB=(DG/DA)²=1/9,S⊿DAB=9S⊿DGE=18
三角形的重心到各边中点的距离等于这边上中线的三分之一.AG:GD=1:2AF:FC=AG:GD=1:2
因为AB=5,BC=6,所以AD=4,设AO=r,在直角三角形BDO中,由勾股定理,得,r^2=(4-r)^2+3^2解得,r=25/8,因为G是重心所以AG=2AD/3=8/3所以OG=AO-AG=
解∵AB=5,BC=6,∴BD=3∴AD=4,设AO=R,在直角△BDO中,由勾股定理,得,R^2=(4-R)^2+3^2解得,R=25/8,因为G是重心∴AG=2AD/3=8/3∴OG=AO-AG=
在AB上取E点使AE=AB/3.设AC中点为D.BE/BA=BG/BD=2/3,∠ABD=∠EBG△ABD∽△EBG,EG//=2*AD/3=AC/3向量AE=三分之一向量AB向量EG=三分之一向量A
重心和三角形各个顶点的连线,把三角形的面积分成相等的三部分所以三角形BCG的面积=3cm^2
连接CG并延长交AB于H,设CE=X∵G是△ABC的重心∴CG/GH=2/1,AH=BH∵CF∥AB∴CF/DH=CG/GH=2/1∴DH=CF/2=X/2∵DE∥BC∴平行四边形BCFD∴BD=CF
答案等于三分之二根号三