如图 点g是三角形abc的重心 过g作ge平行ab

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:34:10
如图 点g是三角形abc的重心 过g作ge平行ab
三角形ABC中,∠C=90°,G 是三角形的重心,AB=5,BC=4,求 过点G的直线MN平行AB,交AC于M,交BC于

延长CG交AB于K,∵G是重心,∴CG/GK=2,即CG/CK=2/3,又MN//AB,∴MN/AB=CG/CK,即MN/5=2/3,MN=10/3(如果没学过重心性质,要证CG/GK=2,就连BG延

已知点G是三角形ABC的重心,则向量GA+向量GB+向量GC=

=0重心是三边中线的交点,延长GA交BC于O,再延长至P,得OP=GO根据中线的性质,GA=2GO,得GA=GP连接BP,CP得BOCP是平行四边形得题中等式=0

若G是三角形ABC的重心,则向量GA+向量GB+向量GC=?

设AM是AB边上的中线,延长AM至D,使MD=AM,AD=2AM,向量AD=向量AB+向量BD,以下通为向量,2AM=AB+BD,AM=(AB+BD)/2,BD=AC,AM=(AB+AC)/2,AG=

证明G为三角形ABC所在平面内一点,GA+GB+GC=0点G是三角形ABC的重心

取BC中点D,连结并延长GD至E,使DE=GD,则四边形BGCE是平行四边形∴向量GB=向量CE∴向量GB+向量GC=向量CE+向量GC=向量GE由向量GA+向量GB+向量GC=0得:向量GB+向量G

已知G是△ABC的重心,若PQ过△ABC的重心G,且OA=a,OB=b,OP=ma,OQ=nb

这道题应该根据PG和PQ共线来解PG=PA+AG=OA-OP+AC=-am+1/3a+1/3bPQ=OQ-OP=nb-ma∴PG=μPQμ·(nb-ma)=-am+1/3a+1/3bkn=1/3.①k

在三角形ABC中,AB=3,AC=4,∠A=90度,G是三角形ABC的重心,过G的平面与BC平行,AB∩α=M,AC∩α

因为BC//平面α,且平面ABC∩α=MN,所以BC//MN,则三角形AMN相似于三角形ABC,因此,若设直线AG与BC交于D,则AG:AD=2:3,所以由MN:BC=AG:AD=2:3得MN=2/3

已知,三角形ABC中,∠C=90°,G 是三角形的重心,AB=8.求:1.GC的长; 2.过点G的直线MN平行AB,求M

解析:有结论:若△ABC的中线为AD,重心为G,则AG:GD=2:1,此结论可用向量法和普通平面几何法等进行证明,不再赘述.第一题:1、直角三角形斜边的中线等于斜边的一半,结合以上结论,得GC=(2/

已知AD是△ABC的边BC上的中线,G是三角形的重心,EF过点G且平行于BC,分别交AB、AC于点E、F.求AF:FC和

∵G是三角形的重心,且AD是BC边上的中线,∴AG:GD=2:1,AG:AD=2:3,∵EF∥BC,∴AF:FC=AG:GD=2:1,EF:BC=AF:AC=AG:AD=2:3.

AD是三角形ABC的中线,G是重心,GE∥AB,已知S三角形GDE=2求S三角形ABC

解:点G为三角形ABC的重心,则DG/GA=1/2,DG/DA=1/3.GE平行AB,则⊿DGE∽⊿DAB.则S⊿DGE/S⊿DAB=(DG/DA)²=1/9,S⊿DAB=9S⊿DGE=18

已知AD是三角形ABC的边BC上的中线,G是三角形ABC的重心,EF过点G平行于BC交AB、AC于点E、F.求AF:FC

三角形的重心到各边中点的距离等于这边上中线的三分之一.AG:GD=1:2AF:FC=AG:GD=1:2

已知三角形ABC,AB=AC=5,BC=6,O是三角形ABC的外心,G是三角形的重心,求OG的长

因为AB=5,BC=6,所以AD=4,设AO=r,在直角三角形BDO中,由勾股定理,得,r^2=(4-r)^2+3^2解得,r=25/8,因为G是重心所以AG=2AD/3=8/3所以OG=AO-AG=

急.已知三角形ABC,AB=AC=5,BC=6,O是三角形ABC的外心,G是三角形的重心,求AO、OG的长

解∵AB=5,BC=6,∴BD=3∴AD=4,设AO=R,在直角△BDO中,由勾股定理,得,R^2=(4-R)^2+3^2解得,R=25/8,因为G是重心∴AG=2AD/3=8/3∴OG=AO-AG=

在三角形ABC中,G是三角形ABC的重心,证明:向量AG=三分之一(向量AB+向量AC)

在AB上取E点使AE=AB/3.设AC中点为D.BE/BA=BG/BD=2/3,∠ABD=∠EBG△ABD∽△EBG,EG//=2*AD/3=AC/3向量AE=三分之一向量AB向量EG=三分之一向量A

已知点G是三角形ABC的重心,三角形ABC的面积为9cm2,那么三角形BCG的面积为

重心和三角形各个顶点的连线,把三角形的面积分成相等的三部分所以三角形BCG的面积=3cm^2

已知点g是三角形abc的重心,D,E过点G且DE平行BC求S三角形ade:S三角形abc的值

连接CG并延长交AB于H,设CE=X∵G是△ABC的重心∴CG/GH=2/1,AH=BH∵CF∥AB∴CF/DH=CG/GH=2/1∴DH=CF/2=X/2∵DE∥BC∴平行四边形BCFD∴BD=CF