如图 点p是圆o外一点,pa切圆o于点a.ab是圆o的直径,连接op,过

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 19:19:48
如图 点p是圆o外一点,pa切圆o于点a.ab是圆o的直径,连接op,过
如图,P是圆O外一点,PA,PB分别与圆O相切于点A,B,点C是弧AB上一点,经过点C作圆O的切线,分别与PA,PB相交

 (1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等;      OC=OA, OD=OD;三角

P为圆O外一点,PA.PB切圆O于点A.B,PA=5,∠P=70°,C为弧AB上一点,过C作圆O的切线分别交PA.PB于

∠P=70°,所以∠AOB=110度,DA,DC,EB,EC分别是圆的切线,根据切线长定理,∠DOE=1/2∠AOB=55度DC=DA,EC=EB,所以周长为PD+PE+DE=PA+PB=2PA=10

如图,P是圆O外一点,PA切圆O于点A,AB是圆O的直径,BC//OP切交圆于点C,请准确判断直线PC与圆O是怎样的位置

连接AC,OC∵AB为⊙O直径∴AC⊥BC(严谨一些的话,要先∠ACB=90°再垂直)∵BC//OP∴OP⊥AC.(其实这里要写上∵BC//OP,∠BCA=90°,导出内错角也为90°,再OP⊥AC)

已知:P为⊙O外一点,PA,

解题思路:本题主要根据切线性质和平行线的判定解答。解题过程:

如图,点p为圆o外一点,自点p向圆o引切线pa,pb,切点为a,b,cd切圆o于点e,交pa,pb于点c,d,若pa等于

连接OA,OC,OE.∵A和E均为切点.∴∠OAC=∠OEC=90°;又OA=OE,OC=OC.∴Rt⊿OAC≌Rt⊿OEC(HL),AC=EC.同理可证:BD=ED,PA=PB.∴PC+CD+PD=

P是圆O外一点,PA切圆O于A,AB是圆O的直径,PB交圆O于C,若PA=2cm,角B=30°,求出图中阴影部分面积.

根据切割鉴定理:PA²=PC*PB(可通过△PAC∽△PBA证明)则PB=PA²/PC=4,BC=PB-PC=4-1=3∵A是切点,则OA⊥PA∴AB²=PB²

如图已知P是圆O外一点,PA切圆O于A,AB是圆O的直径,PB交圆O于C,PA=2cm,PB=4cm,求图中阴影部分的面

过C点.O点做辅助线CO,过O点做垂线,垂直PA交PA于D.由题意知,角PAB为直角.PB=2PA,所以角ABP等于30度.因圆心角是圆周角的2倍,所以角POA等于60度.在三角形PBA中,PB=4,

P是圆O外一点,PA切圆O于A,AB是圆O的直径,PB交圆O于C,若PA=2cm,PC=1,求阴影部分面积

根据切割鉴定理:PA²=PC*PB(可通过△PAC∽△PBA证明)则PB=PA²/PC=4,BC=PB-PC=4-1=3∵A是切点,则OA⊥PA∴AB²=PB²

如图,设P是圆O外一点,PO与圆O交于B点,PA是圆O的切线,已知PA=2,PB=1,则圆的半径是_____

延长PO交圆于D∴BD是圆直径∴PD=PB+BD=1+2OB∵PA是圆O的切线∴切割线定理PA²=PB×PD2²=(1+2OB)×1OB=3/2

如图,已知P是圆O外一点,PA,PB分别切圆O于A,B,PA=PB=4,C是弧AB上任意一点,过C作圆O的切线分别交PA

∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8

如图,已知p是圆o外的一点,PA切圆o 于A,AB是圆O的直径,PB交圆O于C,若 PA=2cm,

PA切圆O于A,BA⊥PA,∠BAP=90°,PA=2cm,PB=4cm;PA=PB/2,则∠B=30°;AB²=PB²-PA²=4²-2²=12AB

如图,已知P是圆o外的一点,PA切圆o于A,PB切圆o于B,BC是圆o的直径,求证:AC∥OP

∵PA切圆o于A,PB切圆o于B连接PO则OP平分∠AOB即∠AOB=2∠POB∵弧AB所对圆心角为∠AOB,所对圆周角为∠ACB(同弧所对圆心角是圆周角的二倍)∴∠AOB=2∠ACB∴∠POB=∠A

p为圆o外一点,PA,PB为圆o的切线,A,B是切点,BC是直径.求证:AC‖OP

“樱之雪舞—欣”:OA⊥PA,OB⊥PB(半径⊥切线)PA=PB(圆外一点到圆的切线相等),OP=OP,∠PAO=∠PBO=90°△PAO≌△PBO∠POB=∠POA∠ACO=1/2(∠AOB=∠PO

尺规作图:已知圆O外一点P,过P点作圆O的两条切线PA、PB

连接OP,尺规法找到OP中点M,以M为圆心,OP为直径作圆与圆O交于点A,点B连接PA,PBPA,PB即为所求切线

如图,圆O是Rt△ABC的外接圆,∠ABC=90度,点P是圆外一点,PA切圆O于点A,且PA=PB(1)求证:PB是圆O

圆心为O连结OP,OB.可得因为是圆的半径,所以OA=OB已知,PA=PB,且共用边OP.得出,三角OPA全等于,三角OPB,推出,角OBP是90度,推出PB是圆O的切线.

已知P是圆O外一点,PA,PB是圆O的两条切线,切点分别是A,B,BC是直径.求证AC平行OP

证明:连接OA,OB,AB∵PA,PB是⊙O的切线∴∠OAP=∠OBP=90°∵OA=OB,OP=OP∴△OAP≌△OBP∴PA=PB,∠APO=∠BPO∴AB⊥PO∵BC是直径∴∠BAC=90°即A