如图 点p是圆o外一点,pa切圆o于点a.ab是圆o的直径,连接op,过
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 19:19:48
(1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等; OC=OA, OD=OD;三角
∠P=70°,所以∠AOB=110度,DA,DC,EB,EC分别是圆的切线,根据切线长定理,∠DOE=1/2∠AOB=55度DC=DA,EC=EB,所以周长为PD+PE+DE=PA+PB=2PA=10
1. 直线PC与圆O相切 证明:如你图,连接OC;  
连接AC,OC∵AB为⊙O直径∴AC⊥BC(严谨一些的话,要先∠ACB=90°再垂直)∵BC//OP∴OP⊥AC.(其实这里要写上∵BC//OP,∠BCA=90°,导出内错角也为90°,再OP⊥AC)
由切割线定理得PA^2=PB*PCPC=8
解题思路:本题主要根据切线性质和平行线的判定解答。解题过程:
连接OA,OC,OE.∵A和E均为切点.∴∠OAC=∠OEC=90°;又OA=OE,OC=OC.∴Rt⊿OAC≌Rt⊿OEC(HL),AC=EC.同理可证:BD=ED,PA=PB.∴PC+CD+PD=
根据切割鉴定理:PA²=PC*PB(可通过△PAC∽△PBA证明)则PB=PA²/PC=4,BC=PB-PC=4-1=3∵A是切点,则OA⊥PA∴AB²=PB²
过C点.O点做辅助线CO,过O点做垂线,垂直PA交PA于D.由题意知,角PAB为直角.PB=2PA,所以角ABP等于30度.因圆心角是圆周角的2倍,所以角POA等于60度.在三角形PBA中,PB=4,
根据切割鉴定理:PA²=PC*PB(可通过△PAC∽△PBA证明)则PB=PA²/PC=4,BC=PB-PC=4-1=3∵A是切点,则OA⊥PA∴AB²=PB²
延长PO交圆于D∴BD是圆直径∴PD=PB+BD=1+2OB∵PA是圆O的切线∴切割线定理PA²=PB×PD2²=(1+2OB)×1OB=3/2
∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8
PA切圆O于A,BA⊥PA,∠BAP=90°,PA=2cm,PB=4cm;PA=PB/2,则∠B=30°;AB²=PB²-PA²=4²-2²=12AB
∵PA切圆o于A,PB切圆o于B连接PO则OP平分∠AOB即∠AOB=2∠POB∵弧AB所对圆心角为∠AOB,所对圆周角为∠ACB(同弧所对圆心角是圆周角的二倍)∴∠AOB=2∠ACB∴∠POB=∠A
“樱之雪舞—欣”:OA⊥PA,OB⊥PB(半径⊥切线)PA=PB(圆外一点到圆的切线相等),OP=OP,∠PAO=∠PBO=90°△PAO≌△PBO∠POB=∠POA∠ACO=1/2(∠AOB=∠PO
连接OP,尺规法找到OP中点M,以M为圆心,OP为直径作圆与圆O交于点A,点B连接PA,PBPA,PB即为所求切线
圆心为O连结OP,OB.可得因为是圆的半径,所以OA=OB已知,PA=PB,且共用边OP.得出,三角OPA全等于,三角OPB,推出,角OBP是90度,推出PB是圆O的切线.
证明:连接OA,OB,AB∵PA,PB是⊙O的切线∴∠OAP=∠OBP=90°∵OA=OB,OP=OP∴△OAP≌△OBP∴PA=PB,∠APO=∠BPO∴AB⊥PO∵BC是直径∴∠BAC=90°即A