如图 等边三角形abc中有一个等腰三角形,并且∠1=∠2,∠3=∠4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 21:32:29
如图 等边三角形abc中有一个等腰三角形,并且∠1=∠2,∠3=∠4
【如图,已知在等边三角形ABC中,D是BC边上一点...

∵△ABD和△CBE中,∠ABD=∠CBE=60°,AB=CB,BD=BE∴△ABD≌△CBE∵△ABN和△CBM中,∠ABN=60°+60°=120°,∠CBM=180°-60°=120°=∠ABN

如图,三角形ABC中,角ABC=30度,以BC,AC为边做等边三角形BCD和等边三角形ACE联结BE

我网上搜了下,找到图了,顺便答案也发给你把.连结DE,如下图红线所示由于△BCD为等边三角形,BC=BD这样BC和BE都已经变换到△BDE中,因此我们现在只要想办法证明出AB=DE且∠BDE=90°即

如图,在△ABC中,分别以AB,AC,BC为边在BC的同侧做等边三角形ABD,等边三角形ACE,等边三角形BCF

因为三角形BCF和三角形ACE是等边三角形所以角BCF=角ACE=60度又因为角BCF=角BCA+角ACF,角ACE=角FCE+角ACF所以角BCA=角ECF(1)因为三角形BCF和三角形ACE是等边

如图,已知等边三角形ABC中E为AB边上任一点,△CDE为等边三角形,连接AD,则有AD‖BC,说明理由

证明:∵△ABC等边∴AC=BC,∠BAC=∠B=∠ACB=60°∵△CDE等边∴CD=CE,∠DCE=60°∴∠ACB=∠DCE∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴∠CAD=∠B=6

5.如图,等边三角形内有一个等腰三角形,并且

1)等边三角形内有一个等腰三角形∠1=∠2=30,∠3=∠4=30∠5=180-(∠2+∠3)=180-(30+30)=1202)三角形内角和=(3-2)*180四边形内角和=(4-2)*180五边形

如图,在等边三角形ABC中,线段AM为BC上的中线

(2)∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=BE,

如图,P是等边三角形ABC中的一个点,PA=2,PB=23

将△BAP绕B点逆时针旋转60°得△BCM,则BA与BC重合,如图,∴BM=BP,MC=PA=2,∠PBM=60°.∴△BPM是等边三角形,∴PM=PB=23,在△MCP中,PC=4,∴PC2=PM2

如图,在等边三角形ABC中,D是BC上一点,以AD为边作等边三角形ADE,连接EC

1.三角形ABD和ACE啊证明:边AB=ACAD=AE因为角BAD+角DAC=角EAC+角DAC所以角BAD=角EAC两边夹一角相同,这两个三角形也就相同了.2.因为1两个三角形相等,所以角ABD=角

如图,已知在三角形ABC中AD=BE=CF,且△DEF是等边三角形,求证:△ABC是等边三角形

证法一:这里用了两个明显的结论①当三角形两边不变时,第三边增大时,第三边对的角也增大.②当三角形两边不变时,第三边对的角增大时,其余两角都变小证明:由对称轮换性不妨设A》B》C那么BC》AC》AB∵A

如图,在四边形ABCD中,三角形ABC是边长为4的等边三角形,三角形ACD是一个等腰三角形,DC=AD,角ADC=120

解题思路:将△ADE绕点D顺时针旋转120°,使DA与DC重合,得△DCM解题过程:解:(三)因为△ADC是等腰三角形,且∠ADC=120°,所以∠ACD=∠DAC=30°因为∠EDF=60°所以∠A

三角形 如图在三角形ABC中,以AB,AC边为边向外做等边三角形ABD和等

证明:连接CD,BE∵△ABD和△ACE都是等边三角形∴AD=AB,AC=AE,∠BAD=∠CAE=60°∴∠DAC=∠BAE∴△ACD≌△ABE∴CD=BE∵P是BD中点,M是BC中点∴PM是△BC

如图,在等边三角形ABC中

解题思路:等边三角形的性质以及全等三角形的性质是解决问题的关键解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prced

如图(有图),以ABC的每一边为边长为边长,作三个等边三角形,所得图形中横线部分与点点部分面积相等

图看不大清楚,自己画了一个如果点C在AE上,△ABC是直角三角形,否则就不是直角三角形

如图,已知△ABC是等边三角形

解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S

如图,在等边三角形abc中,点p,q分别在ac,bc上,且a

解题思路:本题主要根据全等三角形的性质、等边三角形的判定进行解答解题过程:

如图,已知等边三角形ABC中,BD=CE,AD与BE相交于点P

1、∵三角形ABC是等边三角形∴AB=BC,∠ABC=∠C=60°∵BD=CE∴△ABD≌△BCE∴∠ABD=∠CBE在三角形APE中,∠AEP=∠C+∠CBE=60°+∠CBE,∠PAE=∠BAC-