如图 等边三角形ABC的边长p为bc上一点,若角APD=60度,则图中相等的角是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:15:17
如图 等边三角形ABC的边长p为bc上一点,若角APD=60度,则图中相等的角是
如图,三角形ABC是边长为a的等边三角形,P是三角形ABC内的任意一点,过点P作EF‖AB交AC、BC于点E、F,作GH

∵△ABC是等边三角形,∴∠A=∠B=∠C=60°.∵GH‖BC,∴∠AGH=∠B=60°,∠AHG=∠C=60°.∴△AGH是等边三角形,∴GH=AG=AM+MG①同理△BMN是等边三角形,∴MN=

如图,等边三角形ABC的边长为a,P为△ABC内一点,且PD‖AB,PE‖BC,PF‖AC,那么,PD+PE+PF的值为

如图,延长DP,交AC于G,延长FP交BC于H,∵PD∥AB,PF∥AC,∴四边形AFPG是平行四边形,∴AG=PF,∵PE∥BC,∴∠PEG=∠C=60°,同理,∠PGE=∠A=60°,∴△PEG等

1,如图,等边三角形ABC的边长为3,点P、Q分别是AB、BC上的动点(点P、Q与三角形ABC的顶点不重合),且AP=B

1.取AB的中点D,连接CD,因ABC为等腰三角形,故CD⊥AB,CDP为直角三角形.则有CP=√(CD²+DP²),其中CP=Y,CD=3√3/2,DP=3/2-AP=3/2-X

如图,边长为三分之二的等边三角形ABC放在数轴上

C表示的数是:2/3+2/3x3=8/3,又可以读作二又三分之二

如图:三角形ABC为等边三角形,边长为2.1:在平面内找一点P,使得三角形PAB、三角形PBC、三角形PAC均为等腰三角

距离最大你算错了,该是2+2*根号3吧,距离最小就是P10P6,P10P6=AP6-AP10=AP6-(2/3)AF=AP6-(2/3)AB*sin60=2-(2/3)*2*(2分之根号3)=2-3分

如图,三角形abc是边长为3的等边三角形.

延长AB到点E,使BE=CN,连接DE∵∠DBE=∠DCN=90°DB=DC∴△DBE≌△DCN∴DE=DN∵易得:∠EDM=∠NDM=60°DM为公共边∴△DME≌△DMN∴MN=EM从而,有:MN

如图,圆O的内接圆等边三角形ABC的边长为2倍根号3

没看到图啊,题目也不完整再问:P是劣弧AC上的一点(动点),AP,BC的延长线交于一点D求(1)圆的半径再答:过A做BC垂线交BC于E则BE=根号3三角形OBE中角OBE=30度,BE=根号3所以半径

如图,等边三角形ABC的边长为3,点P、Q分别是AB、BC上的动点(P、Q与三角形ABC的顶点不重合),且AP=BQ,A

1.用cosine定律可知,y^2=x^2+3^2-2*x*3*cos(60)=x^2-3x+90x^2-9x+9=0==>x=(9±√(45))/2因x

如图,△ABC是边长为10的等边三角形,动点P和动点Q分别从点B和点C同时出发,沿着△ABC逆时针运动,已知动点P的速度

1)2t-t=20∴t=202)①P在BC上,Q在AC上则0<t≤5∴0.5(10-t)×根号3t=8根号3t1=2t2=8(不合舍去)②P在BC上,Q在AB上5<t≤100.5(10-t)×根号3(

如图,△ABC是等边三角形,P为三角形内任意一点,边长为1.

(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+

如图,⊙O是等边三角形ABC的外接圆,⊙O的半径为2,则等边三角形ABC的边长为(  )

连接OA,并作OD⊥AB于D,则∠OAD=30°,OA=2,∴AD=OA•cos30°=3,∴AB=23.故选C.

如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速

1、△BPQ是边长为4的等边三角形BP=AB-AP=6cm-1cm/s*2s=4cmBQ=2cm/s*2s=4cm角B=60度所以是等边三角形2、当运行时间为t时:BP=6-tBQ=2tS=1/2(6

如图,过边长为6的等边三角形ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当

过P作一条平行线平行于CQ,交ED与F,你会自己证明AE=EF,FD=CD(三角形全等的方法),最后得出ED=3

如图,△ABC是边长为3的等边三角形,将△ABC沿直线BC向

解题思路:(1)由平移的性质可知BE=2BC=6,DE=AC=3,故可得出BD⊥DE,由∠E=∠ACB=60°可知AC∥DE,故可得出结论;(2)在Rt△BDE中利用勾股定理即可得出BD的长.解题过程

如图,等边三角形ABC的边长为a,P是三角形ABC内的一点,PE∥BC,PF∥AC,PD∥AB,

作PH‖AB交AB于H,作FM‖BC交AC于M, 易得△AFM和△FHP为等边△,四边形BDPH和PEMF为平行四边形. ∴PF=FH,PE=FM=AF,PD=BH ∴P

如图,△ABC是边长为4厘米的等边三角形,现有两动点P、Q,其中点P从顶点A出发,沿射线AB的方向运动,点Q

你自己把图画出来对着看第一题当他是等边三角形时4-t=tt=2第二题在三角形中因为他们速度都为1所以AP=BQ三角形ABC是等边三角形所以AC=BC∠B=∠A所以△ABQ≌△CAP边角边原理第三题因为

如图,已知等边三角形ABC的边长为10,点P、Q分别为边AB、AC上的一个动点,点P从点B出发以1cm/s的速度向点A运

设当运动t秒时,线段PQ按逆时针方向旋转60°得线段QD,此时点D恰好落在BC边上,则BP=t,CQ=2t,如图,∴QP=QD,∠PQD=60°,∴∠AQP+∠CQD=120°,又∵△ABC为等边三角

如图,已知,等边三角形ABC的边长为1,求它的面积

过顶点作三角形的垂线,得到两个有一个角为60度的直角三角形.因为是等边三角形所以此垂线也是底边的平分线,因此直角三角形的一条直角边为0.5,斜边为1,可以得出另一条直角边也就是等边三角形的高线为四分之

如图,等边三角形ABC的边长为a,P为△ABC内一点,且PD‖AB,PE‖BC,PF‖AC,

作PH‖AB交AB于H,作FM‖BC交AC于M, 易得△AFM和△FHP为等边△,四边形BDPH和PEMF为平行四边形. ∴PF=FH,PE=FM=AF,PD=BH ∴P