如图,,抛物线y=ax²-8a 12a(a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:15:02
如图,,抛物线y=ax²-8a 12a(a
如图,已知抛物线y=ax^2+bx+c交x轴与A、B两点,交y轴与点C(0,8)若抛物线的对称轴为直线x=-1,且△AB

如图,已知抛物线y=ax^2+bx+c交x轴与A、B两点,交y轴与点C(0,8)若抛物线的对称轴为直线x=-1,且△ABC的面积为40,在直线BC上,是否存在这样的点Q,使得点Q到直线AC的距离为5求

如图,一直点A(-4,8)和点B(2,n)在抛物线y=ax^2上

将A(-4,8)代入y=ax^2:8=16a则a=1/2抛物线解析式为:y=x^2/2则B点座标为:B(2,2)点B关于x轴对称点P的坐标:P(2,-2)Q点的确定:连接AP,直线AP与X轴的交点即是

如图抛物线Y=ax^2-2ax-3a交x轴于A,B,交y轴于D点,点C的横坐标为2.求抛物线的对称轴及A,B两点的坐标

(1)对称轴是x=1.A.B两点的坐标是:(-1,0);(3,0).(2)如果点C不是在抛物线上,那就算不出抛物线的解析式.如果点C在抛物线上,则其坐标是:C(2,-3a)D(0,-3a).所以AD=

已知,如图1,抛物线y=ax²-2ax+c(a≠0)与y轴交于点C(0,-4)

(1)将A、C坐标代入抛物线y=ax²-2ax+c得:0=9a-6a+c4=c解得:a=4/3,c=4所以抛物线解析式为y=4x²/3-8x/3+4(2)

如图1,抛物线y=ax^2-3ax+b经过A(-1,0),C(3,-2)

(1)y=1/2x^2-3/2x-2(2)k=-3/2(3)看不清楚呀

如图,抛物线y=ax^2+bx+c与x轴的一个交点A在点(

问题补充:如图,抛物线y=ax^2+bx+c与x轴的一个交点A在点(-2,0)和(-1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则a的取值范围a的取值范围是-0.7

如图抛物线y=ax2-8ax+12a与x轴交A、B两点,P在y轴正半轴,PB与抛物线交于C,已知C是BP的中点,∠PBO

答:1)y=ax^2-8ax+12a=a(x-2)(x-6)与x轴交点A(2,0)和B(6,0)设点P为(0,p),p>0依据题意:点C为(3,p/2)因为:∠PBO=45°所以:直线PB的斜率k=-

如图1,已知抛物线 y=ax^2 的顶点为P,A、B是抛物线上两点,AB‖x轴,△PAB是等边三角形.

(2)②先求出顶点(2,-10),然后设(2-a,-10+√3a)代入解析式解方程即可(3)设抛物线Y=a(X-m)²+n当a<0时又∵C(m-b,n-√3b)代入自己解得一个答案当a>0时

如图抛物线,y=ax^2+bx+2交x轴于A(-1,0),B(4,0)两点.

抛物线x轴于A(-1,0),B(4,0)两点,可以表达为y=a(x+1)(x-4)=ax²-3ax-4a-4a=2a=-1/2y=-(x+1)(x-4)/2其余题目不清楚,没法做再问:再答:

如图,抛物线y=ax^2+8ax+12a与x轴交于A,B两点(点A在点B的左侧)

y=a(x^2+8x+12)=a(x+2))(x+6)图像与x轴相交说明y=0即a(x+2))(x+6)=0所以x=-2或x=-6A的坐标应该为(-2,0)B的坐标应该为(-6,0)交点应该在x轴负半

如图,抛物线y=-ax²+3ax+2.

答:抛物线方程y=-ax^2+3ax+2=-a(x-3/2)^2+2+9a/4所以抛物线对称轴x=3/2,故点C一定在对称轴的右侧.令x=0,y=2,所以点A(0,2)令y=-ax^2+3ax+2=0

如图 在平面直角坐标系中 已知抛物线y=ax^+2x+3(a

写大概思路行吗?4题都要写?再问:第四题再答:ED的长度为Y,可是DE怎么表示?不妨看成ED=EN-DN,ON一段是X也是E点的横坐标。先看EN是在一元二次函数上的一点,那我可以带进函数里,当ON为X

如图,抛物线y=ax²+bx(a>0)经过原点O和点A(2,0) 1.求抛物线的对称轴.2.点

1,首先抛物线过原点又过点(2,0)所以对称轴即为x=12,又a>0故而抛物线开口向上故而对于x1<x2<1有y2<y13,由题意知C(3,2)A(2,0)故而所求函数即为y=2x-4要分数急用感激万

如图,抛物线y=ax2-8ax+12a(a<0)与x轴交于A,B、两点(点A在点B的左侧),抛物线上另有一点C在第一象限

解题思路:主要考查你对求二次函数的解析式及二次函数的应用,等腰三角形的性质,等腰三角形的判定,相似三角形的性质等考点的理解。解题过程:

如图,抛物线y=x^2-2mx+(m+1)^2(m>0)的顶点为A,另一条抛物线y=ax^2+n(a

设,A(x1,y1)p是A,B中点,B(0,1)x1+xB=2xp.y1+yB=2yp.得x1=2,y1=5,由B点坐标代入y=ax^2+n(a

如图,抛物线y=ax²+bx-4a经过A(-1,0)

解题思路:分析抛物线过两点,由待定系数求出抛物线解析式;根据D、E中点坐标在直线BC上,求出D点关于直线BC对称点的坐标;有两种方法:法一作辅助线PF⊥AB于F,DE⊥BC于E,根据几何关系,先求出t

如图,抛物线y=ax²+c(a

(△ABG+△BCD+四边形OABC)面积对称与四边形ODEF面积所以说△ABG+△BCD面积=10-6=4

已知抛物线Y=aX^2(a

y=ax^2,x^2=2*(1/2a)*y,即p=1/2a所以F(0,p/2)即F(0,1/4a),准线l:y=-p/2即y=-1/4a(1)直线L斜率不存在.易得只有一交点,不合题意(2)设直线L: