如图,A.B是圆心O上的两点,∠AOB=120°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:08:22
如图,A.B是圆心O上的两点,∠AOB=120°
如图,圆O中AB是直径,AC是弦,B,C两点之间的距离是2cm.求圆心到弦AC的距离.

因为圆O中AB是直径,AC是弦,点B,C两点间的距离是2cm,所以∠ACB=90度,作OD⊥AC,交AC于D,∠ADO=90,则OC‖BC,所以∠ABC=∠AOD,∠ACB=90度=∠ADO,∠CAB

如图,把圆心O平移,使圆心O上的点A平移到了点B,画出平移后的圆

连接AB,过D做AB的平行线,在作出的平行线上取点C,使得AB=CD(C在D右边),以C为圆心,CB为半径做圆,新作出的圆即为所求

如图,圆O与圆O'交于A,B两点,点O在圆O'上,圆O'的弦OC交AB于D

∵∠OBA=∠OCA,且∠OAB=∠OCB,又∵∠OBA=∠OAB,∴∠OBA=∠OCB,∵∠BOC=∠BOC,∴△OBD∽△OCB(A.A.),∴r/OC=BD/BC,∴r×BC=OC×BD,同理,

已知直线PA交园心O于A、B两点,AE是圆心O的直径,点C为圆心o上一点,且AC平分角PAE.过C作cD垂直PA,垂足为

连接OC..∵点C在⊙O上,OA=OC,.∴∠OCA=∠OAC..∵CD⊥PA,.∴∠CDA=90°,则∠CAD+∠DCA=90°..∵AC平分∠PAE,.∴∠DAC=∠CAO..∴∠DCO=∠DCA

和圆有关如图,直线L经过圆O的圆心O,且与圆O交于A、B两点,点C在圆O上.且角AOC=30°,点P是直线L上的一个动点

一楼中,当CQ⊥OP时,QO是斜边,而QP是直角边,不可能有QO=QP二楼中,点P与点B重合时,点Q也与点P重合,此时QP退化成一个点,而QO是半径,也不可能相等我的解答如图所示:

如图,圆O是以原点O为圆心,半径为根号2的圆,直线AB交坐标轴于A,B两点,OB=4,tan角BAO=2,P为直线AB上

1、不知道A在x轴上,还是y轴上我只能猜A在x轴上且在正半轴,B在y轴上了,且在正半轴.OB=4tan∠BAO=2则OA=2B坐标(0,4)A坐标(2,0)当角CPD=90度时,那么四边形CODP是正

如图,圆O与圆P相交于A.B两点.圆P经过圆心O,点C是圆P的优弧AB上任意一点,连AB.AC,BC,OC.(1)指出

答案是这样的:(1)指出图中与角ACO相等的一个角;∠ACO=∠BCO(2)当点C在圆P什么位置时,直线CA与圆O相切?说明理由.当点在圆O上点D位置时,直线CA与圆O相切连接OP并延长,交圆O于点D

如图,OC是⊙O的半径,以C为圆心,OC长为半径作弧,交⊙O于A,B两点.求弧AB的度数

/>连接OA,OB∵OA=OC,CA=CO∴AC=AO=OC∴△AOC是等边三角形∴∠AOC=60°同理可得∠BOC=60°∴∠AOB=120°∴弧AB的度数为120°

1 如图,OC是圆O的半径,以C为圆心,OC长为半径作弧,交○O于点A,B两点.求弧AB的度数

因为ocbcac均为以c为圆心的圆的半径,所以oc=cb=ca.因为ocoaob均为以o为圆心的圆的半径,所以oc=oa=ob,所以oc=cb=ca=ob=oa,所以△oca和△ocb均为等边三角形,

如图,直线l经过⊙O的圆心O,且与⊙O交于A,B两点,点C在⊙O上,且∠AOC=30°,点P是直.看图,图有完整的题目

存在只需要满足众多条件中的一个即可再问:那个条件?能不能举个例子再答:嗯哼你的题我看不清呢只是我们当时期中考试的时候全班除了第一名之外全部都死在这个提上了我们班主任告诉我们存在就只满足众多条件中的一个

如图,已知两个等圆圆心o1和圆心o2相交于a,b两点,圆心o1经过o2点,点c是弧ao2b上的任意一点,连接bc,

是等圆可知:弧ao2b=120度<d=1/2弧ao2b=60°<acb=1/2优弧ab=1/2(360-弧ao1b)=120°<dca=60°三角形acd是等边三角形

如图,A,B是圆心O上的两点,角AOB=120度,C是AB弧的中点,求证四边形DACB是菱形

连接OC,可知角AOC=角BOC=60°所以AO=AC=BO=BD所以四边形OACB是菱形

如图,⊙P与⊙O相交于A、B两点,⊙P经过圆心O,点C是⊙P的优弧AB上任意一点(不与点A、B重合),连接AB、AC、B

:(1)∵OA^=OB^,∴∠ACO=∠BCO;(2)连接OP,AO,并延长与⊙P交于点D若点C在点D位置时,直线CA与⊙O相切理由:连接AD,OA,则∠DAO=90°∴OA⊥DA∴DA与与⊙O相切即

如图1,AD为圆心O的直径,B,C为圆心O上两点,点C在弧AB上,且弧AB=弧CD,过A点做圆心O的切线,交BD于延长线

(1)略(2)BE=BG+EG=BD+EF,理由是:设FD与AE交于点O,过O做OG⊥DE,∵∠AED=∠ADF,且∠ADF=∠AED∴∠AED=∠AED∴FE=EG又∵弧AB=弧CD∴∠DAB=∠A

如图1,AD为圆心O的直径,B,C为圆心O上两点,点C在弧AB上,且弧AB=弧CD,过A点做圆心O的切线,

(1)连接AC因弧AB=弧CD,则AB=CD,则∠ADB=∠DAC(相等弦对应圆心角相等)因∠ADB=∠DAC,∠DBA=∠ACD=90度(直径所对角为90度),AD=AD,则三角形DBA全等三角形A

如图,⊙P与⊙O相交于A、B两点,⊙P经过圆心O,点C是⊙P的优弧上AB任意一点(不与点A、B重合),连接AB、AC、B

(1)连接OA,OB.在⊙O中,∵OA=OB,∴OA=OB,∴∠ACO=∠BCO;(2)连接OP,并延长与⊙P交于点D.若点C在点D位置时,直线CA与⊙O相切理由:连接AD,OA,则∠DAO=90°∴

如图,AP是圆心O的切线,A为切点,点B在圆心O上,且PA=PB,求证PB是圆心O的切线.

证明:连接OA,OB,OP.      点B在圆心O上,且PA=PB;      

已知圆上两点a、b的坐标和半径R求圆心O的坐标

已知点A(a,b)B(c,d),半径为R设O(x,y),AB的中点为M(m,n)其中m=(a+c)/2,n=(b+d)/2可知OM和AB垂直且OA的长度为R所以用向量的方法:向量OM和向量AB乘积为0

如图,已知直线AB经过圆O的圆心,且与圆O相交于A,B两点,点C在圆O上且∠AOC=30°点P是直线AB上一个动点

符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60