如图,a.f.b.c是圆o上的四个点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:24:07
证明:连结AC∵AB是圆O的直径∴∠ACB=90°即BC⊥AC又∵PA⊥圆O所在平面,且BC在这个平面内∴PA⊥BC因此BC垂直于平面PAC中两条相交直线∴BC⊥平面PAC
(1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等; OC=OA, OD=OD;三角
没有图,我只能自己表字母了:设D在AC,E在BC,F在AB连接OA、OB、OC∴S△AOB=1/2OF×AB=1/2r×cS△BOC=1/2OE×BC=1/2r×aS△AOC=1/2OD×AC=1/2
证明:(1)因为PA⊥平面ABC,且BC⊂平面ABC,所以PA⊥BC.又△ABC中,AB是圆O的直径,所以BC⊥AC.又PA∩AC=A,所以BC⊥平面PAC.(2)由(1)知BC⊥平面PAC,∵BC⊂
⊙O的半径为根号5,可以这样设正方形ABCD的边长为2x,则OC=x,CD=2x,设⊙O半径为r连接OD、OF,则DO=OF=r,由正方形CEFG的面积是4,可得它的边长是2,即CG=FG=2在Rt△
证明:连接OC∵C是弧AB的中点,∠AOB=120°∴∠AOC=60°∴△AOC是等边三角形∴OA=AC同理可得BC=OB∴OA=OB=BC=AC∴四边形OACB是菱形再问:你确定你没有看错图?
证明:(1)∵PA⊥面ABC,BC⊂面ABC,∴BC⊥PA,又AB是圆O的直径,∴BC⊥AC所以BC⊥面PAC,又因AF⊂面PAC,所以AF⊥BC,又因AF⊥PC,所以AF⊥面PBC,又因PB⊂面PB
证明:1、∵直径CE∴∠CAE=90∴∠ACE+∠AEC=90∵∠AEC、∠ABC所对应圆弧都为劣弧AC∴∠AEC=∠ABC∴∠ACE+∠ABC=90∵CD⊥AB∴∠BCF+∠ABC=90∴∠ACE=
1、∠ACE+∠AEC=90°∠DCB+∠ABC=90°∠AEC=∠ABC所以∠ACE=∠DCB又因为∠ACE=∠ACF+∠FCE∠DCB=∠BCE+∠ECF所以∠ACD=∠BCE2、因为∠ACE=∠
∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8
证明:PA⊥面ABC,→PA⊥BC,又∵AC⊥BC,∴BC⊥面PAC,∵AF在面PAC内,∴BC⊥AF,又∵AF⊥PC,∴AF⊥面PBC,∵PB在面PBC内,∴AF⊥PB,又∵PB⊥AE,∴PB⊥面A
1)连接OB,AB//OC=
设OC长为x,则半径为√5在三角形OGF中使用勾股定理即可得OF=4√5
解题思路:利用圆中的性质和相似三角形。解题过程:已知A,P,B,C是圆O上的四点,∠APC=∠BPC=60°,AB与PC交于Q点,若AP=6,AQ/BQ=3/5,求PB的长图和
不一定全等.只有一边相等和边的对角相等.不满足全等条件.随便举个反例就行了
结论:△ABC与△DCB不全等∠A和∠D所对的都为BC弦所以∠A=∠D只有一边和一对角条件不足
我们团队没有及时解答求助,很抱歉1、(1)延长AD交圆O于Q,连接CP、CQBC是直径,AD⊥BC,根据垂径定理:DQ=AD,所以AQ=2AD.∠ACB=∠QCB,所以∠ACQ=2∠ACB弧AP=弧A
角OAB是50度再答:求采纳