如图,ab,bc分别是圆o的直径和弦,点d是弧bc上一点,弦de教圆o于点e

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 17:04:36
如图,ab,bc分别是圆o的直径和弦,点d是弧bc上一点,弦de教圆o于点e
如图,AB是圆O的直径,BC是弦,D为弧AC中点,求证OD平行BC

先吐槽一下==图好难看做法是连接AC和OC证明:因为角ACB所对的线段AB为圆的直径所以角ACB为90°因为弧AD=弧CD所以角AOD=角COD同时易知AC与OD垂直易知角ACO+角COD=90°角A

如图,已知三角形ABC,AC=BC=6,角C=90度,O是AB的中点,圆O与AC,BC分别相切于点D与点E.点F是圆O

延长AC.过点G作AB的平行线,交AC延长线于点H.因为GH//AB 所以△CGH相似于等腰直角△ACB,△DGH相似于△ADF因为AC=BC=6 ∠ACB=90度 D为

如图,已知三角形ABC中,BC=AC,角C=90度,点O是AB的中点,圆O与AC,BC分别切于点D,E.设圆O交OB于点

(1).相等链接OD两点.由题可知,三角形ACB为等腰直角三角形,O为斜边AB中点,AC为圆的切线,则OD垂直AC,即OD平行于BC,推出角DOA=角CBA.因为角OFD=角ODF,所以角DOA=2倍

如图,在△ABC中,∠C=90°,AC+BC=9,点O是斜边AB上一点,以O为圆心2为半径的圆分别与AC、BC相切于点D

(1)连接OD、OE,∵⊙O切BC于E,切AC于D,∠C=90°,∴∠ADO=∠BEO=90°,∠ODC=∠C=∠OEC=90°,∵OE=OD=2,∴四边形CDOE是正方形,∴CE=CD=OD=OE=

如图,在直三棱柱A1B1C1-ABC中,AB⊥BC,E,F分别是A1B,AC1的中点,)

证明1连结A1C,由A1C1CA是矩形则A1C必过AC1的中点F即F是A1C的中点同理E是A1B的中点则EF是ΔA1BC的中位线即EF//BC又由BC在平面ABC中EF在平面ABC外则EF//平面AB

如图,在直四棱柱ABCD-A1B1C1D1中,A1C1⊥B1D1,E,F分别是AB,BC的中点.

(1)连接AC,则AC∥A1C1,而E,F分别是AB,BC的中点,∴EF∥AC,则EF∥A1C1,故EF∥平面A1BC1(7分)(2)因为BB1⊥平面A1B1C1D1,所以BB1⊥A1C1,又A1C1

如图,AB是圆O的直径,BC是弦,PA切圆O于A.OP平行于BC,求证:PC是圆O的切线

证明:PA切圆O于A,则∠PAO=90°.连接OC.OP平行BC,则:∠AOP=∠B;∠COP=∠OCB.又OB=OC,∠B=∠OCB.∴∠AOP=∠COP;又OA=OC,OP=OP.故⊿AOP≌⊿C

如图,已知四边形ABCD的边AB,BC,CD,DA分别与圆O相切与E,F,G,H四点,求证:AB+CD=AD+BC

证明:∵四边形ABCD的边AB,BC,CD,DA分别与圆O相切与E,F,G,H∴AE=AH,BE=BF,CF=CG,DG=DH∴AH+DH+BF+CF=AE+BE+CG+DG∴AD+BC=AB+CD

已知如图AB//CD BC//AD BE,CE分别是∠ABC,∠BCD的平分线,F是BE的中点(1)三角形BEC是不是直

(2)先证∠ABE=∠AEB=∠EBC再证三角形AFE与AFB全等则AF垂直于BE又因为BE垂直于CE则平行这个方法是错的哦,不成立,按照这个思想,证明AFE与AFB全等不是成了BBA了吗,BBA是不

如图,已知△ABC,AC=BC=6,角C=90°,O是AB中点,圆O与AC BC分别相切于点D与点E点F是圆O与AB一个

连接OD因为AC与圆O相切所以OD⊥AC因为∠C=90°,AC⊥BC,OA=OB所以OD//BC,OD=BC/2=3所以OF=OD=3,∠ODF=∠BGF,∠DOF=∠GBF因为∠OFD=∠BFG所以

如图 ,圆o是三角形abc的内切圆,切点分别为d,f,e,AB=AC=13,BC=10.求园O的半

连接AD,勾股定理能算出来,BD=BE=5得出AE=8,设半径X,在直角三角形AOE中得出方程,解出半径再答:口算结果3分之10,方法就是这,结果没仔细算,你自己再好好算算再问:具体过程。。再答:AD

不用建立坐标系的方法等腰直角三角形ABC和圆O如图放置,已知AB=BC=1,角ABC=90度,圆O的半径为1,圆心O与直

不做图笔述比较复杂.(1)、作图,平移三角形ABC与圆O的左侧在BC边相切,表示为三角形A‘B’C‘,其中B’C‘与圆O相切于点E,过O做B’C‘垂线,交B’C’延长线于D,连接OC‘,此时为三角形A

已知,如图,AD=BC,AB=DC.O是BD的中点,过点O的直线分别交AD,CB的延长线于E,F.

1)证明:∵AD=BC,AB=DC∴四边形ABCD为平行四边形∴AD∥BC∴∠ADB=∠CBD又∵∠ADB+∠BDE=180°∠CBD+∠DBF=180°∴∠BDE=∠DBF又∵O是BD中点∴OD=O

如图,AB//CD,AD,BC交于O点,EF过点O分别交AB,CD于E,F,且AE=DF,求证:O是BC的中点

∵AB平行CD∴角EAO=角FDO且角EOA=角FODAE=DF∴三角形AEO全等与三角形DFO(角角边)∴AO=OD因为角ABO=角DCO角AOB=角DOC所以三角形AOB全等与三角形DOC所以BO

如图,在直三棱柱ABC -A1B1C1中,AC =BC ,AC1垂直于A1B,M,N分别是A1B1,AB 的中点.求证:

由于是直棱柱,则C1M⊥AA1,又由于A1C1=B1C1,则C1M⊥A1B1,从而C1M⊥平面AA1B1B.易证C1M//CN,C1M//平面CB1N,由于四边形AMB1N是平行四边形,则AM//B1

已知如图,在圆O中,AB是圆O的直径,AC,BC分别交圆O于E,D,D是弧BE的中点,角A=40度,求角C大小

连接AD∵D是弧BE的中点∴弧BD=弧DE∴∠BAD=∠CAD(等弧对等角)∵直径AB∴∠ADB=90∴AC=AB(三线合一)∴∠C=∠ABC=(180-∠BAC)/2=(180-40)/2=70数学

如图 ,在三角形ABC中AC等于AB,点O是BC的中点,AC切圆O于D,求证:AB是圆O的切线

连接OD,∵AD是⊙O的切线,∴OD⊥AC,过O作OE⊥AB,垂足为E,又AC=AB,∴∠∠C=∠B,点O是BC的中点,∴OC=OB,∴⊿OCD≌⊿OBE﹙AAS﹚,∴OE=OD,又OE⊥AB,∴AB

如图,圆O是△ABC的内切圆,分别切AB,BC,CA于点D,E,F.设圆O的半径为r,BC=a,CA=b,AB=c,求证

证明:连接OA、OB、OC.∵S△ABC=S△OAB+S△OBC+S△OCA又∵S△OAB=12AB•r,S△OBC=12BC•r,S△OCA=12CA•r∴S△ABC=12AB•r+12BC•r+1

如图,已知三角形ABC,AC=BC=6,角C=90度O是AB的中点,圆O与AC,BC分别相切于点D与点E.点F是圆O与

OD=3即圆的半径,则,OF=3BF=3根号2-3接着求出BF/FAAD/DC=1接着利用截线DFG与三角形ABC的梅涅劳斯定理,求出CB/BG接着就易求CG了不知道这是什么程度的题目,用了梅涅劳斯定