如图,ab∥cd,ad.bc相交于点e,过点e作ef∥ab,交bd于点f

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:19:25
如图,ab∥cd,ad.bc相交于点e,过点e作ef∥ab,交bd于点f
如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE垂直BC

解(1)证明:连接AC,∵AB∥CD,∴∠ACD=∠BAC,∵AB=BC,∴∠ACB=∠BAC,∴∠ACD=∠ACB,∵AD⊥DC,AE⊥BC,∴∠D=∠AEC=90°,∵AC=AC,∴∠D=∠AEC

如图,AB∥CD,E为BC中点,∠AED=90°,求证:AB+CD=AD

延长AE,DC交于点F∵AB∥FC∴∠ABE=∠FCE又BE=CE(中点定义),∠AEB=∠FEC(对顶角相等)∴△ABE≌△FCE(ASA)∴AE=FE,AB=FC又∠AED=90°,∠FED=18

如图,在梯形ABCD中,AB∥CD,E是BC的中点,AB+CD=AD,求证:

证明:(1)如图所示,延长DE交AB的延长线于点M,∵AB∥CD,∴∠CDE=∠M,(两直线平行,内错角相等).在△DCE和△MBE中,∠CDE=∠M∠CED=∠BEMCE=BE∴△DCE≌△MBE(

如图已知AB//DC AD//BC 证明 1 AB=CD 2AD=BC

连接AC∵AB//DC∴∠BAC=∠DCA∵AD//BC∴∠BCA=∠DAC∵AC=CA∴△ABC≌△CDA∴AB=CDBC=AD

如图,已知AB//DC,AD//BC.证明:(1)AB=CD;(2)AD=BC

∵AB//DC,AD//BC∴四边形ABCD是平行四边形∴AB=CD,AD=BC自己写的.楼主好好看看书吧.

如图,梯形ABCD,AD∥BC,AB=AD+BC,E是CD的中点.求证:

证明:(1)过E作EF∥BC,∵E是CD的中点,∴F为AB中点,∴EF是梯形ABCD的中位线,则EF=12(AD+BC)=12AB,∴AE⊥BE(直角三角形斜边的中线等于斜边的一半);(2)∵EF是梯

如图,在梯形ABCD中,AD∥BC,AB=CD=AD,BD⊥CD.

(1)∵AD=AB,∴∠ADB=∠ABD.∵AD∥CB,∴∠DBC=∠ADB=∠ABD.∵在梯形ABCD中,AB=CD,∴∠ABD+∠DBC=∠C=∠ABD+∠ADB=2∠DBC.∵BD⊥CD,∴3∠

已知:如图,AB⊥BD,CD⊥DB,AD=BC 求证:AB=CD

需要解答吗?再问:需要。再答: 再答:希望采纳哦,*^o^*再问:=_=你说的时候我都去学校了

如图,ad=bc,ab=cd,求证AB平行CD

∵ad=bc,ad=cd∴四边形abcd是平行四边形∴ab∥cd再问:想等可以直接推平行四边形?再答:可以的,两组对边相等就推出平行四边形,这是数学书上的定理啊,第一步写错了是∵ad=bc,ab=cd

如图,AB//CD,AD//BC,AD=BC吗?AB=CD吗?为什么?(图为一个平行四边形)

∵AB//CD,AD//BC∴四边形ABCD是平行四边形∴AD=BC,AB=CD平行四边形对边相等

如图,AB‖CD,AD‖BC

(1)如果AB‖CD,AD‖BC且AB⊥BC则∠B=∠C而题目没有说明AB⊥BC∴∠B≠∠C(2)∵AB‖CD,AD‖BC∴∠ABC+∠C=∠ADC+∠C=180`(两直线平行,同旁内角互补)∴∠AB

如图在直角梯形ABCD中,AB∥CD,AD垂直CD,AE垂直BC于E,AB=BCE,AB=BC求证CD=CE

连接ACAB=BC∠BAC=∠BCAAB//CD∠BAC=∠ACD=∠BCAAE垂直BCAD垂直CDAD=AD△ADC≌△AECCD=CE哪步看不懂可以问再哦

已知,如图,AD∥BC,∠BAD=∠BCD,求证:AB∥CD

证明:∵AD//BC【已知】∴∠BAD+∠ABC=180º【平行,同旁内角互补】∵∠BAD=∠BCD【已知】∴∠BCD+∠ABC=180º【等量代换】∴AB//CD【同旁内角互补,

如图,已知AD∥BC,AB∥CD,MN=PQ.求证:DE=BE

∵AD∥BC,∴∠MAN=∠ABC,∠MDE=∠QBE,∠M=∠Q又∵AB∥CD,∴∠ABC=∠QCP,AD=BC∴∠MAN=∠QCP,又∵MN=QP∴△AMN≌△CQP∴AM=CQ,∴DM=BQ,∴

已知如图,AB等于AD,BC等于CD

懒得回答了再问:求求你,帮我写下过程好吗,急用再答:要给好评哦再问:太给力了,你的回答已经完美的解决了我问题!再答:再答:不懂可以问问我

如图,已知AD、BC交与点O,AB∥CD,OA=OD,求证:AB=CD

AB∥CD,角ABC=角DCB,角BAD=角ADC,OA=OD三角形AOB全等于三角形DOC,则AB=CD

已知:如图,AB=CD,AB‖DC.求证:AD=BC,AD‖BC.

连结AC,则:∵AB‖DC∴∠BAC=∠DCA又∵AC=CA,AB=CD∴△ABC≌△CDA∴AD=BC,∠DAC=∠BCA∴AD‖BC证毕哪里不懂,再补充吧……

已知:如图,AD∥BC,AD=BC.求证:(1)△ADC≌△CBA;(2)AB∥CD.

点C、D标反了证明:∵AD∥BC∴∠DAC=∠BCA∵AD=BC,AC=CA∴△ADC≌△CBA(SAS)∴∠CAB=∠ACD∴AB∥CD

如图,已知AB∥CD,∠A=∠C,试说明AD∥BC

∵AB∥CD(已知)∴∠ABF=∠C(两直线平行,同位角相等)又∵∠A=∠C(已知)∴∠A=∠ABF(等量代换)∴AD∥BC(内错角相等,两直线平行)