如图,AB切圆O与点C与点D,点E为弧DC的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:39:13
连结OE,则OE⊥AB,∵圆O是Rt△ABC的内切圆,∴BO是∠ABC的角平分线,∴∠OBE=∠DBC∴Rt△BOE∽Rt△BDC,∴BE:BC=BO:BD即BE*BD=BO*BC
(1)证明:连接OD.∵直线CD与⊙O相切于点D,∴OD⊥CD,∠CDO=90°,∠CDE+∠ODE=90°.又∵DF⊥AB,∴∠DEO=∠DEC=90°.∴∠EOD+∠ODE=90°,∴∠CDE=∠
(1)连接OC,OE,O和E分别为AB和BD中点,所以OE//AD,即
延长AC.过点G作AB的平行线,交AC延长线于点H.因为GH//AB 所以△CGH相似于等腰直角△ACB,△DGH相似于△ADF因为AC=BC=6 ∠ACB=90度 D为
连接OC,∵直线l与⊙O相切于点C,∴OC⊥CD;又∵AD⊥CD,∴AD∥OC,∴∠DAC=∠ACO;又∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.
我只是想问一下“过D做圆O的切线交BC于E”这句话有什么用?你只要算出线段BC长度不大于2倍的线段DC就可以了.
证明:(1)∵PC是直径,∴∠PDC=90°,∴∠BDP+∠ADC=90°,又∠BDP=∠DCP,∴∠ADC=∠ACD,即AC=AD,∴AD也是⊙O的切线.∴BD2=BP•BC,∵BD=2
连接OD因为AC与圆O相切所以OD⊥AC因为∠C=90°,AC⊥BC,OA=OB所以OD//BC,OD=BC/2=3所以OF=OD=3,∠ODF=∠BGF,∠DOF=∠GBF因为∠OFD=∠BFG所以
(1)证明:如图,连接OC,∵DE是⊙O的切线,∴OC⊥DE.又∵AE⊥DE,∴OC∥AE.∴∠EAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠EAC=∠OAC.∴AC是∠EAB的平分线.
这两个角相等啊.角BON和角AON是对顶角所以两者相等.根据“AB,MN与CD相交与点O,OA=OB,OM=ON”和边角边定理可知道三角形AOM和三角形BON全等,所以角A等于角B,由于角A和角B是内
(1)连接OC,因为C是圆O上一点,CD是圆O的切线,所以∠DCO=90度,∠ACB=90度,所以∠DCB=∠DCO-∠OCB=∠90度-∠OCB,∠CAB=180度-∠ACB-∠CBA=∠90度-∠
先连接O’E、O’C再把O、O’连起来再延长于OB相交D那么D就是AB与小圆的相切点即O’D=r且
再问:这是错的。。。再答:朋友,你认为哪里错了呢,有什么根据呢?最好能指出来。我已对这个解答进行了全面的检查,是地毯式的、逐字逐句的检查,经检查,未发现有差错。不过也许百密也有一疏,如果你真的发现有错
(1)证明:连接OD.∵直线CD与⊙O相切于点D,∴OD⊥CD,∠CDO=90°,∠CDE+∠ODE=90°.又∵DF⊥AB,∴∠DEO=∠DEC=90°.∴∠EOD+∠ODE=90°,∴∠CDE=∠
o的半径=2,应该是吧=-=再问:要过程类
连接OCPA=PC=6AD=PA/tan∠PDA=8,PD=√(PA²+AD²)=10CD=PD-PC=4,OC=CDtan∠PDA=3OA=OC=3,OD=AD-OA=5tan∠
OD=3即圆的半径,则,OF=3BF=3根号2-3接着求出BF/FAAD/DC=1接着利用截线DFG与三角形ABC的梅涅劳斯定理,求出CB/BG接着就易求CG了不知道这是什么程度的题目,用了梅涅劳斯定
帮你找到原题了,http://www.qiujieda.com/math/115438/真的一模一样以后遇到初中数理化难题都可以来这个网站搜搜寻找思路,题库超大,没有原题也有同类题,界面很科学哦,也可
(1)延长BC交AD延长线于P∵AB是直径,AC⊥BC,AC⊥CP,∠ACP=90°又,DC与圆O相切,则,OC⊥CD,∠OCD=90°∴∠ACD+∠DCP=∠ACD+∠OCA=90°,即∠OCA=∠
AC与BD相等.理由如下:∵AB=DC,∴弧AB=弧CD,∴弧AB+弧BC=弧BC+弧CD,即弧AC=弧BD,∴AC=BD.