如图,AB和CD分别是圆o上的两条弦,圆心O

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:18:02
如图,AB和CD分别是圆o上的两条弦,圆心O
直线与圆:如图,已知CD是△ABC的边AB上的高,以CD为直径的⊙O分别交CA,CB于点E,F,点G是AD的中点.求证

证明:连接OE,OG,DE∵CD是△ABC的边AB上的高∴∠BDC=∠ADC=90°∵点G是AD的中点∴AG=GD又∵OC=OD∴OG是△ACD的中位线∴OG=1/2AC∵CD是⊙O的直径∴∠AED=

如图,已知AB,CD是圆O的两条弦,且AB=CD

∵弦AB=CD∴弧AB=弧CD∴∠ACB=∠DBC弧AB+弧AD=弧CD+弧AD即弧BD=弧AC∴∠ABC=∠DCB∵∠ACB=∠DBC,AB=CD∴⊿ABC≌⊿DCB﹙AAS﹚

如图,AB是圆O的直径,点C在圆O上,∠BOC=108°,过点C作直线CD分别交直线AB和圆O于点D、E,连接OE,DE

设∠CDB为X,∠CEO为YX+2(180-Y)=180Y=X+(180-Y)解这两个方程组得y=∠CEO=138°X=∠CDB=96°

如图,AB,CD是圆O的两条弦,M,N分别为AB,CD的中点,且∠AMN=∠CNM,AB=6

连接OM,ON∵M、N分别为AB、CD的中点∴OM⊥AB,ON⊥CD∴∠CNO=∠AMO=90°∵∠AMN=∠CNM∴∠OMN=∠ONM∴OM=ON∴AB=CD=6

如图 ab cd是圆o的两条弦,M,N分别为AB,CD的中点,且∠AMN=∠CNM,AB=6

证明:连接OM,ON,OA,OC,∵M、N分别为AB、CD的中点,∴OM⊥AB,ON⊥CD,∴AM=1/2  AB,CN=1/2CD,∵∠AMN=∠CNM,∴∠NMO=∠MNO,即

如图,已知AB、CD是⊙O的两条弦,且AB=CD,E、F分别是AB、CD的中点,求证:∠AEF=∠CFE

证明:连OE,OF因为AB、CD是⊙O的两条弦,E、F分别是AB、CD的中点,所以OE⊥AB,OF⊥CD所以OE=OF(同圆中,相等的弦所对的弦心距相等)∠AEO=90,∠CFO=90所以∠OEF=∠

如图,AB、CD是圆O的两条弦,M、N分别为AB、CD的中点,且角AMN等于角CNM,求证AB=CN

证明:∵OA=OB,OC=OD∴∠AMO=∠ANO=90°AM=CNAO=CO∵∠AMN=∠OMN+∠AMO=∠OMN+90°=∠ONM+90°=∠ONM+∠ANO=∠CNM∴∠OMN=∠ONM∴OM

如图,已知AB是圆O的直径,CD、AB分别是圆O的切线.切点分别为D、B,求证OC平行AD

图不对哦证明:连接OB、OD∵CD、CB是圆O的切线∴∠ODC=∠OBC=90°∵OD=OB,OC=OC∴△OBC≌△ODC∴∠COB=∠COD∵OA=OD∴∠A=∠ODA∵∠BOD=∠A+∠ODA=

已知:如图,在圆O中,OE,OF分别是弦AB,CD的弦心距,且OE=OF.求证AB=CD

做辅助线:连接OA\,OB,OC,OD,则有:OA=OB=OC=OD在三角形OAE和OCF中,OA=OC,OE=OF,角OEA=角OFC=90度,所以三角形OAE与OCF全等,所以AE=CF,同理可证

如图,已知线段AB,点O是线段AB上的点,CD分别是AO.OB的中点

what?再问:如图,已知线段AB,点O是线段AB上的点,CD分别是AO.OB的中点若CD=2求线段AB的长。如图二,若点O在AB的延长线上时,若CD=2,则线段AB的长是多少?你发现了什么?没打完,

AB和CD分别是圆O上的两条弦,圆心O到它们的距离分别是OM和ON,如果AB大于CD,OM和ON的大小有什么

OM小于ON可以画一下图很容易看出来或者从看(弦长/2)^2(圆心到弦距离)^2=半径^2OM

如图,AB是圆O的直径,点C在圆O上,∠BOC=108°,过点C作直线CD分别交直线AB和圆O于点D、E,连接OE,

(1)DE=AB/2=OE,则:∠EDO=∠EOD=(1/2)∠OEC;OE=OC,则:∠OCE=∠OEC=∠EDO+∠EOD=2∠CDB.∵∠BOC=∠OCE+∠CDB=3∠CDB.即108°=3∠

如图,圆O的半径为5cm,G为直径AB上一点,弦CD经过G点,CD=6cm ,过点A和点B分别向CD引垂线AE和BF,则

答案有误,应该是8cm!设OH⊥CD,垂足为H延长AE至P点,使PE=BF,连接PB;再延长OH交PB于Q点显然,BPCF为矩形!其中PC=HQ=BF△OBQ和△ABP均为直角三角形而O是AB的中点,

如图,圆O中,N,M分别是不平行的两条弦AB和CD的中点,且AB=CD证角AMN=角CNM

延长BC,DA交于E点.关键是证EDB为等腰三角形.然后分别减去BM,DN(BM=DN),则ENM为等腰三角形.EDB为等腰三角形的证法:弧AB=弧CD,所以弧CAB=弧ACD,所以对应的圆周角相等.

已知:如图,在圆O中,OE,OF分别是弦AB,CD的弦心距,且OE=OF.求证:AB=CD

首先,OA=OB=OC=OD,所以OAB,OCD是等腰三角形.OE,OF分别是他们的高所以也是他们的中线和角平分线所以AE=EBCF=DF因为直角三角形只要斜边相等,一条直角边相等就能推出全等所以AO

如图,AB是圆O的直径,CD是弦,AE⊥CD,BF⊥CD,E,F分别为垂足,BF交半圆于G.

证明:连接AC、AD、AG、DG,∵AB是圆O的直径,∴∠AGB=RT∠,AE⊥CD,BF⊥CD,E,F分别为垂足,∴四边形AEFG是矩形.∴AE=GF,EF//AG,∴∠ADE=∠DAG,∴②弧AC

如图,平行四边形ABCD的对角线AC,BD交于点O,E、F分别是AB,CD上的点,分别沿DE,BF折叠平行四边形ABCD

DEBF为菱形EO垂直于BD,所以EOD=90度,沿DE折叠A落在O处,所以A与O关于DE对称,所以DAB=EOD=90度DO=DA=1/2DBAB/BC=根3/1=根3

如图,AB是圆O直径,C为圆O上的一点,AD垂直CD,且AC平分角BAD.求证:CD是圆O的切线.如图,AB是圆O直径,

因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=