如图,AB断是光滑的圆弧面,BC段是粗糙的水平面,BC=0.9m,质量为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 02:09:15
(1)、设物块的质量为m,其开始下落处位置距BC的竖直高度为h,到达B点时的速度为v,小车圆弧轨道半径为R.由机械能守恒定律得:mgh=12mv2 &
看一下再答:不是吧,这么简单你也问?再答:这题甚至于可以口算。再问:大神。。。求过程。。再答:好吧。再答:
(1)由机械能守恒定律,得:mgR=12mvB2在B点 N−mg=mvB2R由以上两式得 N=3mg=3N.故小物块到达圆弧轨道末端B点时受的支持力为3N.(2)设在水平面上滑动的
A、B、物体沿着位于同一竖直圆上所有光滑细杆由静止下滑,到达圆周最低点的时间相等,所有无论θ多大,t1是不变的,证明如下:由几何关系可知lAC=2Rsinα物体从A运动到C的过程中加速度a=gsinα
1.由能量守恒,到H高度时,物体动能为0mgh=μmgs+mgH代入数据→H=0.6m2.整个过程只有摩擦力做功,由能量守恒,μmgs'=mgh解得s'=5m来回一次,最后停在水平轨道中间(2m→2m
(mgR)/2=(mv^2)/2gR=mv^2r=R·2^(1/2)
解析:设物块开始下落的位置距水平轨道BC的竖直高度是h,则最高的到A点高度为h-r,物体从最高点下落到A点的过程中,机械能守恒,则mg(h-r)=1/2mv^2①由物块到达圆弧轨道最低点B时对轨道的压
(1)小球第一次滑下来过程,动能定理:mgh=1/2mv0^2与M碰撞后速度v1,则根据动量守恒:mv0=(m+M)v1把物块小球看做整体,根据动能定理:W弹=0-1/2(m+M)v1^2而Ep弹=-
..我大概想象出了你所给的图1,求通过总路程.这题目显然是用能量守恒来解,最终摩擦力做的功将等于P位置的重力势能减去B位置的重力势能(因为每次上到AB轨道都会因为摩擦力损失能量,直到最终恰好上不了AB
(1)A到B的过程由动能定理得,−qER+mgR=12mvB2−0解得vB=3m/s.在B处,由牛顿第二定律得,NB−mg=mvB2R解得NB=28N.根据牛顿第三定律,小球对轨道的压力NB′=NB=
物体沿斜面下滑加速度a=g(sin37-μcos37)=4所以下滑到斜面末端速度v1,2aL=v1^2v1=8m/s设后来共同速度为v2,A与B的质量比m:M=k,A与B共同运动时间为t.A减速v2=
1、设A到C的垂直高度为h物体对AB斜面的正压力Fn=mgsinθ摩擦力:f=μFn=μmgsinθ由A到第一次经过C点位置过程用动能定理:f*(h+R*cosθ)/sinθ=mgh解得:h=μRco
(1)因为摩擦始终对物体做负功,所以物体最终在圆心角为2θ的圆弧上往复运动.对整体过程由动能定理得mgR•cosθ-μmgcosθ•x=0所以总路程为x=Rμ.(2)对B→E过程,由动能定理得mgR(
N-mg=mv^2/R1/2mv^2=mgR解出的N即为压力.
(1)mgr=mvB^2/2VB^2=2gr=2X10X0.2=4VB=2m/sFB-mg=mVB^2/rFB=3mg=3X0.1X10=3N(2)a=-umg/m=-ug=-0.5X10=-5m/s
小车恰能通过最高点C完成圆周运动mg=mvc^2/R由能量守恒得mgh=mg2R+1/2mv^2+wfwf=mg(h-5R/2)小车从B点运动到C克服摩擦阻力做的功mg(h-5R/2)小车通过最高点C
用能量守恒做,最后杆的重力势能变成平动动能和转动动能.平动动能跟转动动能的关系通过约束给出,约束是杆端不离开圆弧,这个条件能给出杆旋转角速度与质心速度的关系,平动动能用杆质量和质心速度算,转动动能用杆
分析:因为物体释放后能沿斜面下滑,说明物体不可能停在斜面上.一、若物体在圆弧轨道刚好能上升到C点(与圆心O等高),则对应的L值设为L1则从释放到C点,由动能定理 得 (mg*sinθ-μ*mg*cos
(1).利用重力势能转换为动能计算出b点速度.(2).N-mg=m*v^2/r求出N,再用牛顿第三定律得物体在b点对轨道压力等于N.(3).由机械能守恒,得C点动能等于克服BC段摩擦力做功和BA段克服