如图,AB是 O的直径BC是弦,OD⊥BC于点E,交弧于点D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:56:47
OD平分BC即BE=CE弧CD=弧BD三角形ABC为直角三角形OE平分弧BC
先吐槽一下==图好难看做法是连接AC和OC证明:因为角ACB所对的线段AB为圆的直径所以角ACB为90°因为弧AD=弧CD所以角AOD=角COD同时易知AC与OD垂直易知角ACO+角COD=90°角A
作OE⊥CD于E,连结OC则CE=CD/2(垂径定理),OC=AB/2,又∵CE
拜托啦,很急……今晚就要!详细过程哦!AB是圆O的直径,BC是圆O的弦,OD垂直CB,垂足为E,交弧BC于点D,连接AC,CD,DB设角CDB=α,角ABC=β,试找出α与β之间的一种关系式并给予证明
∵BC=CD=DAAB是直径∴弧BC=弧CD=弧DA=60°∴∠AOD=60°∴∠BOD=120°
证明:连接BD、AD∵AB为直径∴∠ADB为直角又∵AE⊥CD∴∠DAE=∠BDC∴弧BC=弧ED
很好做的~因为OC‖AD所以∠COB=∠A,∠COD=∠ODA因为OA=OD所以∠A=∠ODA所以∠COB=∠COD于是△COD≌△COB所以∠COD=∠COB=90°,所以DC为圆O的切线
OD‖BC →△AOD∽△ABC →OD/BC=AO/AB=1:2 &nb
∵AB是⊙O的直径,∴∠ACB=90°,AB=12+(22)2=3.∴sin∠ABD=sin∠ABC=ACAB=223.
很简单(1)四个结论:1、AC平行OD2、角ACD=90度3、BD=DC4、角AOC等于两倍的角ABC(2)因为AC平行OD且O为AB中点,所以D为BC中点(中位线),所以BD=CD=4,设半径长为x
连接DB,DO.∵AB为直径,∴∠ADB=90∴AD⊥BD∵AD‖OC∴OC⊥BD又∵OD=OB∴OC为等腰△ODB的BD边垂直平分线∴∠COB=∠COD2、在△COB和△COD中OD=OBCO=CO
证明:PA切圆O于A,则∠PAO=90°.连接OC.OP平行BC,则:∠AOP=∠B;∠COP=∠OCB.又OB=OC,∠B=∠OCB.∴∠AOP=∠COP;又OA=OC,OP=OP.故⊿AOP≌⊿C
设⊙O的半径为R,∵OD⊥BC,∴CE=BE=12BC=12×8=4,在Rt△BOE中,OE=OD-DE=R-2,OB=R,BE=4,∵OE2+BE2=OB2,∴(R-2)2+42=R2,解得R=5,
连接OEO为圆心CE//AB==>∠BOC=∠OCE,∠AOE=∠OEC(两平行线之间内错角相等)△COE为等腰三角形==>∠OCE=∠OEC==>∠BOC=∠AOE∴BC弧=AE弧(同一圆内圆心角相
证明:如图,连接OC;∵BC∥OP,∴∠B=∠POA,∠BCO=∠COP,∵OB=OC,∴∠B=∠OCB,∴∠COP=∠AOP;∵OC=OA,OP=OP,∴△PCO≌△PAO,∴∠OCP=∠OAP=9
120度直径AB对应的弧度为180度,BC=CD=DA,则角AOD=角DOC=角COB=60度所以角BOD=120度
取BE的中点F,连接OF.OE,OB为半径,所以OF垂直于EB,设半径为RE是弧BC的中点,OE交弦BC于点D,所以DE垂直于BD,DB=BC/2=4,根据勾股定理,得出BE=2根号5,OF=根号(R
设⊙O的半径为x,因为OD⊥BC于E,所以BE=CE=BC/2=4又OE=OD-DE=x-2.在Rt△OEB中,OE^+BE^=OB^,即:(x-2)^+4^=x^,化简得:-4x+20=0,解得:x
(1).连BE,角E=角ACB,角ABE是直角,所以ABE和ADC相似,AB/AE=AD/AC,又AB=BC,BC*AC=AD*AE(2).FAC和FCB相似(弦切角ACF=角B),FA/FC=FC/
(1)证明:∵CE是⊙O的直径,∴∠CAE=90°,∴∠BAC+∠BAE=90°,∵CD⊥AB,∴∠BAC+∠ACD=90°,∴∠BAE=∠ACD,∵∠BAE=∠BCE,∴∠ACD=∠BCE;(2)∵