如图,AB是圆0的直径,BC是炫 OD垂直BC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 13:10:48
∵BC是圆O的切线∴角ABC=90°在△OCB和△OBP中得∠C=∠DBA∵AB是圆O的直径∴∠ADB是直角∵AD平行于OC∴∠DAB=∠BOC∴△ADB∽△OBC∴OC/AB=OB/AD∵OB=1,
OD平分BC即BE=CE弧CD=弧BD三角形ABC为直角三角形OE平分弧BC
先吐槽一下==图好难看做法是连接AC和OC证明:因为角ACB所对的线段AB为圆的直径所以角ACB为90°因为弧AD=弧CD所以角AOD=角COD同时易知AC与OD垂直易知角ACO+角COD=90°角A
证明:连接AD∵AB是圆O的直径∴∠ADB=90°=∠ADE∵D是弧BC的中点∴弧BD=弧CD∴∠CAD=∠BAD∵AD=AD∴△AED≌△ABD∴AE=AB再问:d点是be的中点吗、辅助线是怎么做的
拜托啦,很急……今晚就要!详细过程哦!AB是圆O的直径,BC是圆O的弦,OD垂直CB,垂足为E,交弧BC于点D,连接AC,CD,DB设角CDB=α,角ABC=β,试找出α与β之间的一种关系式并给予证明
证明:连接BD、AD∵AB为直径∴∠ADB为直角又∵AE⊥CD∴∠DAE=∠BDC∴弧BC=弧ED
OD‖BC →△AOD∽△ABC →OD/BC=AO/AB=1:2 &nb
连接OC,则有:OB=OC.已知,弧AD=弧CE,可得:∠AOD=∠COE;所以,∠BOE=∠AOD=∠COE;即有:OE是等腰△OBC顶角∠BOC的平分线,所以,OE垂直平分BC,即:DE垂直平分B
解题思路:利用三角形相似分析解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/r
很简单(1)四个结论:1、AC平行OD2、角ACD=90度3、BD=DC4、角AOC等于两倍的角ABC(2)因为AC平行OD且O为AB中点,所以D为BC中点(中位线),所以BD=CD=4,设半径长为x
连接DB,DO.∵AB为直径,∴∠ADB=90∴AD⊥BD∵AD‖OC∴OC⊥BD又∵OD=OB∴OC为等腰△ODB的BD边垂直平分线∴∠COB=∠COD2、在△COB和△COD中OD=OBCO=CO
证明:PA切圆O于A,则∠PAO=90°.连接OC.OP平行BC,则:∠AOP=∠B;∠COP=∠OCB.又OB=OC,∠B=∠OCB.∴∠AOP=∠COP;又OA=OC,OP=OP.故⊿AOP≌⊿C
第二问只能用公式tan2α=(2tanα)/(1-tan²α),算出来是1/3,抱歉,实在是不会用初中的方法.第三问由三角形BDE与三角形BAC相似列式,BD/AB=DE/AC,DE=4x/
∵x²+y²=r²∴B(-r,0),C(r,0),A(rcosQ,rsinQ)∴AB=(-r-rcosQ,-rsinQ),AC=(r-rcosQ,-rsinQ)AB*AC
连接OEO为圆心CE//AB==>∠BOC=∠OCE,∠AOE=∠OEC(两平行线之间内错角相等)△COE为等腰三角形==>∠OCE=∠OEC==>∠BOC=∠AOE∴BC弧=AE弧(同一圆内圆心角相
120度直径AB对应的弧度为180度,BC=CD=DA,则角AOD=角DOC=角COB=60度所以角BOD=120度
取BE的中点F,连接OF.OE,OB为半径,所以OF垂直于EB,设半径为RE是弧BC的中点,OE交弦BC于点D,所以DE垂直于BD,DB=BC/2=4,根据勾股定理,得出BE=2根号5,OF=根号(R
设⊙O的半径为x,因为OD⊥BC于E,所以BE=CE=BC/2=4又OE=OD-DE=x-2.在Rt△OEB中,OE^+BE^=OB^,即:(x-2)^+4^=x^,化简得:-4x+20=0,解得:x
(1).连BE,角E=角ACB,角ABE是直角,所以ABE和ADC相似,AB/AE=AD/AC,又AB=BC,BC*AC=AD*AE(2).FAC和FCB相似(弦切角ACF=角B),FA/FC=FC/
AB是圆O的直径,ADB=90,D是BE的中点中垂线AE=AB