如图,ab是圆o的弦,ao的延长线上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:10:36
题有问题,应是PA*PB=AC*AO证明:因为P是圆O弦AB中点所以OP垂直AB于PAP=PB所以角APO=90度因为PC垂直OA于C所以角ACP=90度所以角APO=角ACP=90度因为角A=角A所
已知,斜边ab与圆o相切于点d,可得:od⊥ab,而且,ac⊥bc,∠bae=∠cae,可得:ad/ao=cos∠bae=cos∠cae=ac/ae,所以,ad×ae=ao×ac.
因为M、N分别是AC、BC的中点,所以MN为三角形CAB的中位线(以C为顶点),所以MN=1/2×AB;又因为O为AB中点,所以OM=1/2×AB,所以MN=AO.
连接OC、OD,则OC=OD又OA=OB,M,N分别是AO,BO的中点,所以:OM=ON又CM⊥AB,DN⊥AB,则:∠OMC=∠OND=90°在Rt△OMC和Rt△OND中,OC=OD,OM=ON,
证明:连接OB、OC∵AB=AC,OB=OC,OA=OA∴△ABO≌△ACO(SSS)∴∠BAO=∠CAO∴AO平分∠BAC∴AO⊥BC(三线合一)数学辅导团解答了你的提问,
我知道怎么做再问:可以不用垂径定理吗?我们还没学到……再答:
过A,O,B,分别作AE⊥CD,OF⊥CD,BG⊥CD于E,F,G所以AE‖OF‖BG又因为AO=BO,所以OG是梯形AEGB的中位线,所以OG=(AE+BG)/2连OC,在直角三角形OCF中,OC=
第二问,先证等腰三角形,再用三线合一可得再问:哪个等腰三角形?再答:三角形AFC再问:如果△AFC为等腰三角形的话,那么AC=AF,因为AC=AB,所以AF与AB重合。这不对吧?再答:第二问,先由弦切
过点O作CD的平行线,即是四边形的中位线,得知OE=AB+CD的一半,也是AC的一半,E也是AC的中点,即可证出AO垂直OC
C为AB中点,则OC垂直AB,由垂径定理容易得到(1);(2)作BG垂直AO,则BG为腰AO上的高,故有BG=AB/2=2根号3在RT△ABG中,由勾股定理知道AG=6,且角A=30度,所以角AOB=
∵OC=OD=r/2,OM=ON∴RT△OCM≌RT△ODN(HL)∴CM=DN∵AM=BN,∠CMA=∠DNB=90°∴△AMC≌△BND∴AC=BD
what?再问:如图,已知线段AB,点O是线段AB上的点,CD分别是AO.OB的中点若CD=2求线段AB的长。如图二,若点O在AB的延长线上时,若CD=2,则线段AB的长是多少?你发现了什么?没打完,
再问:第二问怎么做?再答:AB:BE=根号10:2再问:。谢谢啦。。那。第三问呢?
◆证法1:取AC的中点E,连接OE.(左图)又点O是BD的中点,则:AB+CD=2OE;(梯形中位线的性质)∵AB+CD=AC.(已知)∴AC=2OE.(等量代换)∴∠AOC=90度,即AO⊥OC.(
因为【AB=AD=AO】由圆的性质得【AB=AD=AO=BO】所以【角BDA=角ABD,角BDA+角ABD=角BAO】【三角形ABO是等边三角形】所以【角DBO=ABD+ABO=0.5*BAO+ABO
∠ABD=30°---∠OBD=30°---∠ODB=30°,∠ADB=90°∠BAD=60°-----∠ACD=∠ADC=30°------∠ODC=∠ADC+∠ADO=90°又OD是圆O半径,所以
:(1)∵∠D+∠DCA=∠D+∠DFO=90°,∴∠DFO=∠OC.又∵OD=OA,∠DOF=∠AOC=90°,∴△ACO≌△DFO.∴OF=OC.(2)连接OB、OE,∵OE=OD,OA=OB,∴
◆证法1:取AC的中点E,连接OE.又点O是BD的中点,则:AB+CD=2OE;(梯形中位线的性质)∵AB+CD=AC.(已知)∴AC=2OE.(等量代换)∴∠AOC=90度,即AO⊥OC.(一边的中
在圆O中,若弦AB=3,弦AC=5,则AO·BC的值是()要方法过程设圆的半径为R,角AOB为a,角AOC为bAB^2=AO^2+BO^2-2AOBOcosa=2R^2-2R^2cosaAC^2=AO
阴影部分是哪里?再问:bca那个部分、、再答:三角形oab面积是2分之一乘2乘2倍的根3扇形boc面积是6分之一乘派乘2的平方,两个面积想减就是了