如图,ab是圆o的直径,点e是孤bd

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 09:40:42
如图,ab是圆o的直径,点e是孤bd
如图,已知AB是圆o的弦,AB的垂直平分线交圆o于点C,D,交A,B于点E,AB=6,DE:CE=1:3,求圆o的直径

设DE=X,则CE=3X因为弦的垂直平分线经过圆心所以CD是直径所以AE=BE=AB/2=3因为AE^2=CE*DE所以3X^2=9所以X=√3所以CD=4X=4√3即圆O的半径是4√3

如图,AB是圆O的直径,C.D.E都是圆O上的点,则角C加角D=?

90度,连接OE,角AOE=2角C,角BOE=2角D,角BOE+角AOE=180度,所以角C+角D=90度

如图,AB,CD是圆O的直径,且AB⊥CD,E是OC的中点,过点E做FG平行AB ,交圆O于点F,G两点,求证:∠CBF

证明:因为FG平行AB,AB垂直CD所以FG垂直OC因为E为OC中点,所以FG垂直平分OC所以OF=CF因为OF=OC所以OF=CF=OC所以三角形OCF是正三角形所以∠COF=60度∠CBF=1/2

如图,AB是圆O的直径,C是弧BD的中点,CE垂直AB,垂足为E,BD交CE于点F

连接OD,∵C是弧BD的中点,∴∠COD=∠COB,∵∠A=∠1/2∠DOB,∴∠A=∠COB,∴OC‖AD

如图,ab是圆o的直径,d是弧bc的中点,ac,bd的延长线交于点e,求证ae=ab

证明:连接AD∵AB是圆O的直径∴∠ADB=90°=∠ADE∵D是弧BC的中点∴弧BD=弧CD∴∠CAD=∠BAD∵AD=AD∴△AED≌△ABD∴AE=AB再问:d点是be的中点吗、辅助线是怎么做的

如图AB是圆O的直径,BC是圆O的弦,OD垂直CB于点E,交弧BC于点D,连接CD.

拜托啦,很急……今晚就要!详细过程哦!AB是圆O的直径,BC是圆O的弦,OD垂直CB,垂足为E,交弧BC于点D,连接AC,CD,DB设角CDB=α,角ABC=β,试找出α与β之间的一种关系式并给予证明

已知 如图,AB是圆O一条弦,点C为弧AB中点,CD是圆O的直径,过C点的直线L交AB所在直线于点E,交圆O于点F.

∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE

如图,AB是圆O的直径,CD为弦,CD⊥AB于点E

∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10

如图,已知AB是圆O,直径,E是OB的中点,弦CD垂直AB于E,如果CE=3,那么直径AB长是()

E是OB中点,所以OE=1/2OB=1/2OC,由此可以得出∠OCE=30°,再用三角函数可以算出OC长2√3,那AB就是4√3,但你给的四个选项里没有.不是你打错了,就是卷子有问题.

如图,AB是圆O的直径,CB是铉,OD⊥CB于点E,交圆O于点D,连接AC,AD

2、CE=EB=4,OE=R-ED=R-2OB^2=OE^2+EB^2R^2=(R-2)^2+4^2R=5

如图1,AB是圆O的一条弦,点C是弧AB的中点,CD是圆O的直径,过点C的直线l交AB所在直线于E,交圆O于F

(1)角CEA=角D.(2)结论仍成立.证明:CD为直径,则∠DFC=90°,得∠D+∠DCF=90°;点C为弧AB的中点,则CD垂直AB,得:∠CEA+∠DCF=90°.所以,∠CEA=∠D.

如图 AB是圆O的直径 BC⊥AB于点B,连接OC交圆O于点E,弦AD平行于OC,弦DF⊥AB于点c 若AB=10,AD

AD=6,AB=10,三角形ADB为直角三角形,角D为直角故,BD=8AB*Dc=AD*BD,AD=6,AB=10,BD=8故Dc=4.8DF=2Dc故DF=9.6

①如图1,已知AB是圆O的直径,点C是圆O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线C

话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B

如图,AB为圆o的直径,半径OC⊥AB,点E.F是弧AC的三等分点,DE‖AB.

(1)连接OE、OF,∠AOE=∠EOF=∠FOC,(同弧所对的圆心角相等)在△OED中,∠EOD=60°,∠EDO=90°,∵∠OED=30°.在直角直角形中,30°所对的直角边=斜边的一半.∵OD

如图,AB是圆O的直径,点P是弧AB的中点

先自己画个图,标准点,再看题目

如图,AB是圆O的直径,BC是弦,OD⊥BC于点E,交弧BC于点D

取BE的中点F,连接OF.OE,OB为半径,所以OF垂直于EB,设半径为RE是弧BC的中点,OE交弦BC于点D,所以DE垂直于BD,DB=BC/2=4,根据勾股定理,得出BE=2根号5,OF=根号(R

如图,AB是圆O的直径,AC切圆O于点A,CO交圆O于点P,CO的延长线交圆O于点F,BP延长线交AC于点E,连接AP,

1)等边三角形OFA与OBP全等(俩边长都为半径,加上钝角相等),∠3=∠2,∠2=∠1,所以1=3,所以平行2)连接ap,∠EAP=∠4,∠4=∠1,所以∠EAP=∠1,然后三角形CAP与CFA相似

1.如图已知AB是圆O的直径,C是圆O一点,连接AC,过点C做CD垂直AB于点D,E是AB上的一点,直线CE于圆O

在AB取点E,使AE=AD,易证三角形ADC与三角形AEC全等,可得:角ADC=角AEC三角形CB详细在AB上取点E,使AE=AD,连接CE因为AC平分角BAD所以角EAC=角DAC因为AE=AD,A

如图,AB是圆O的直径,CD⊥AB于点E,交圆O于点D,OF⊥AC于点F.

这个很简单的.我想你要自己学会思考问题.这是一种能力,因为日后的生活中,很问题都自己去思考.到了高中,几何和函数一体的.所以你得自己去弄明白.(1):第一条:∵AB是直径,∴∠ACB=90'根据勾股定