如图,AB是圆O直径,弦AD交AB于E,角ACD=62°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:38:49
连接be,bf由性质知,角aeb=角afb=90度△aeb∽△abc故ae/ab=ab/ac,即ae*ac=ab^2同理△afb∽△abd故af/ab=ab/ad,即af*ad=ab^2所以ae乘ac
∵AD//OC∴∠DAO=∠COB∠ADO=∠DOC∵OA=OD∴∠DAO=∠ADO∴∠COB=∠DOC∴弧DE=弧BE(同圆或等圆中,圆心角相等所对的弧也相等)∴点E为弧BD的中点
连接BD,则三角形ABD是直角三角形,BD²=AB²-AD²;则BD²=80-64=16,则BD=4;因OC垂直AD,则F是AD中点,即AF=4;因角BED=D
连接OC∵OA=OC∴∠OAC=∠OCA∵CD切圆O于C∴OC⊥CD∵AD⊥CD∴OC∥AD∴∠DAC=∠OCA∴∠OAC=∠DCA∵直径AB∴∠ACB=90∴∠ACB=∠ADC∴△ACB∽△ADC∴
1.连结OD,角EDA=角AFB角AFB+角FAB=角EDA+角ADO=90度,DE垂直于圆ODE是圆O的切线;2.连接BD,角ADB=90度=角E,由相似,由勾股定理求AE=9,再由相似求BF=10
证明:连接OD∵OD=OA∴∠ODA=∠A∵EC=ED∴∠EDC=∠ECD=∠ACF∵EF⊥AB∴∠A+∠ACF=90°∴∠ADO+∠CDE=90°即OD⊥DE∴DE是圆O的切线
连接EO∵AB||CE∴∠ECD=∠AOD∵弧EAD所对圆周角为∠ECD,所对圆心角为∠EOD∴∠ECD=1/2∠EOD∴∠EOA=∠AOD∴弧AD与弧AE相等∴AD=AE
8:5 看好了:假设,AC=3,AB=5首先,连接DO,交BC于M,DO为圆的半径,所以与DE垂直,与BC垂直,与AE平行三角形BMO与三角形BCA相似,所以OM=1/2AC=1.5&nbs
1、连结OD. 显然,AO=DO,∴∠OAD=∠ODA,而∠CAD=∠OAD,∴∠CAD=∠ODA, ∴AE∥OD,又DE⊥AE,∴DE⊥OD,∴DE是⊙O的切线.2、你是不是将AE/AB=3/5
2、CE=EB=4,OE=R-ED=R-2OB^2=OE^2+EB^2R^2=(R-2)^2+4^2R=5
(1)∵直径AB⊥CD于E,∴弧BD=弧BC=1/2弧CD,又∵∠BOD=弧BD,∠DFC=1/2弧CD,∴∠DFC=∠DOB(2)连结OC,∵弧BC=1/2弧CD,∴∠BOC=∠CFD,又∵∠OMC
1连接DB,DO.∵AB为直径,∴∠ADB=90∴AD⊥BD∵AD‖OC∴OC⊥BD又∵OD=OB∴OC为等腰△ODB的BD边垂直平分线∴∠COB=∠COD∴E 为弧DB的中点2、在△COB
AD=6,AB=10,三角形ADB为直角三角形,角D为直角故,BD=8AB*Dc=AD*BD,AD=6,AB=10,BD=8故Dc=4.8DF=2Dc故DF=9.6
连接DB,则∠ADB=90°(直径所对的圆周角为直角)因为弦DF⊥AB于点G,可证直角△ADB和直角△DGB全等所以:DB:AB=DG:AD=4:5因为:圆O的半径为5,所以AB=10即:DB=8由勾
连接OD,OD=OA,∠OAD=∠ODA;作OG⊥AC,交AC于G,则AG=GC=AC/2,(△OGA≌△OGC,SSA证明略);DE⊥AC,所以OG‖DE;AD为∠BAC的平分线,∠BAC=2∠DA
证明:1.连接OC∵OA,OC是圆O的半径∴∠CAO=∠ACO①又已知AC平分角DAB交圆O于点C则∠CAD=∠CAO②由①②得∠CAD=∠ACO则OC//AD③∵直线CD垂直AD④∴由③④得直线CD
连接EO因为AB平行CE所以∠ECD=∠AOD因为弧EAD所对圆周角为∠ECD,所对圆心角为∠EOD所以∠ECD=1/2∠EOD所以∠EOA=∠AOD所以弧AD与弧AE相等
连接BC、CD∠ACB=90DE⊥AC∴BC//DE∠BCD=∠CDE∠BCD=∠DAB=∠DAE∴∠DAE=∠CDE则DE为D点切线,则OD⊥DEDO//AE∠ODF=∠DAE而∠OFD=∠EFA∴