如图,AB是抛物线C:x²=4y过焦点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:17:43
如图,AB是抛物线C:x²=4y过焦点
要有过程如图,平行四边形ABCD中,AB=4,点D的坐标是(0,8)以点C为顶点的抛物线y=ax^2+bx+c经过x轴上

(1)在平行四边形ABCD中,CD∥AB且CD=AB=4,∴点C的坐标为(4,8)(1分)设抛物线的对称轴与x轴相交于点H,则AH=BH=2,(2分)∴点A,B的坐标为A(2,0),B(6,0).(4

如图,抛物线y=a(x-1)²+4与x轴交于AB两点,与y轴交于C点 D是抛物线的顶点,

答:抛物线y=a(x-1)²+4,开口向下a<0点C(0,a+4),点D(1,4)CD=√(1+a²)=√2解得:a=-1(a=1不符合舍去)所以:y=-(x-1)²

如图,已知抛物线y=-1/7x²+bx+c和x轴正半轴交于A,B两点,且AB=4,P为抛物线上的一点,它的横坐

(1)过点P作PC垂直于x轴于C因为∠PAO=45°所以AC=PC因为tan∠PBO=3/7所以PC/BC=3/7即BC=7/3PC由BC-AC=7/3PC-PC=4/3PC=4得PC=3,所以P点坐

如图,过抛物线x^2=4y焦点的直线依次交抛物线与圆x^2+(y-1)^2=1于点A,B,C,D,则向量AB乘向量CD的

由x^2=4y  得焦点为(0,1),恰为圆心;  故可设过抛物线x^2=4y焦点的直线为:  y=kx+1.  如图  由向量AB与向量CD共线同向,所以它们的数量积=|AB|×|CD|=(|AF|

如图,过抛物线y^2=4x的焦点F的直线依次交抛物线及圆(x-1)^2+y^2=1于点A,B,C,D,则绝对值AB·CD

其实我没有看到你的图形,我是根据题目的意思猜出图形,ABCD四个点应该是从上到下.1.若直线的斜率不存在,则直线方程为x=1,代入抛物线方程和圆的方程,可直接得到ABCD四个点的坐标为(1,2)(1,

如图,抛物线y=a(x的平方)+bx+c经过点A(4,0),B(2,2),连接0B,AB

数学语言不好打字,这是答案和解析的网址.祝学习愉快咯~

如图,平行四边形ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线y=ax2+bx+c经过x轴上的点A,

(1)∵平行四边形∴DC=4∴C(4,8)又∵C是顶点∴A(2,0)B(6,0)∴f(x)=-2x^2+16x-24(2)f(x)=-2x^2+16x+8……自己验算一下吧我口算的

如图抛物线y=a(x-1)2+4与x轴交于AB两点与y轴交于点CD是抛物线的顶点抛物线的对称轴与X轴交于eAB=DE解析

抛物线y=a(x-1)^2+4与x轴交于A(1-√(-4/a),0),B(1+√(-4/a),0),顶点D(1,4),对称轴与x轴交于E(1,0),由AB=DE得2√(-4/a)=4,∴-4/a=4,

如图,抛物线y=-x²-4x+c(c

x1+x2=-4x1*x2=-c所以(x1-x2)^2=(x1+x2)^2-4x1x2=16+4cAB的长度即两个根的差的绝对值,即:二次根下(16+4c)x2=n代入方程有:c=n^2+4n所以16

如图,曲线C是函数y=6/x在第一象限内的图像,抛物线是函数y=-x^2-2x+4的图像,

1)因为x,y均为整数,所以x为6的约数,即x=-6,-3,-2,-1,1,2,3,6,对应的y=-1,-2,-3,-6,6,3,2,1,所以所求的点为P1(-6,-1)、P2(-3,-2)、P3(-

如图以知抛物线y=x^2+bx+c经过矩形ABCD的两个顶点AB

1)由A(0,2)B(4,2)代入抛物线,得到方程组,解得y=x^2-4x+22)过P点y轴垂线PO'因为AO=2S△APO=1/2*AO*PO’=3/2解得P的横坐标为3/2代入抛物线方程得到P纵坐

如图已知直线l:y=k(x+k)+2与抛物线C:x^2=4y相交于AB两点,过AB分别做C的切线l1,l2

互相垂直,那就是斜率的积为-1,x^2=4y带入y=k(x+k)+2,得x1=2k+2*根号(2k^2+2),x2=2k-2*根号(2k^2+2)抛物线的斜率y‘=x/2y1'*y2'=-1=(2k+

如图,平行四边形ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线y=ax2+bx+c经过x轴上的点A,

(1)在平行四边形ABCD中,CD∥AB且CD=AB=4,点D的坐标是(0,8),∴点C的坐标为(4,8)(1分)设抛物线的对称轴与x轴相交于点H,则AH=BH=2,(2分)∴点A,B的坐标为A(2,

如图11 已知抛物线交x轴正半轴于A B两点 与y轴交于点C 顶点为D AB=4 抛物线的对称轴为x=3 △ABD的面积

依题意可知,交点A的坐标为(1,0),B(5,0),又知对称轴为:顶点坐标为(4,0),即16a=4ac-b^2,设其一般式为y=ax^2+bx+c(a≠0),代入点的坐标可解三元一次方程;也可以根据

二次函数综合如图1 抛物线y=ax²-4ax+3与x轴交AB两点,与y轴交于点C且3AB=2OC1)求此抛物线

A(1,0)Q(X,X^2-4X+3)P(1,M)因为PQ⊥AQ,所以(2-x)*(x-1)=-(m-x^2+4x-3)*(x^2-4x+3)也就是两个直线斜率相乘为负一整理一下就得m=(x-2)/(