如图,AC,BD相交于点O,AB平行DC,AD平行BC,若E,F分别是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:38:21
思路:OA*OD=OB*OC,即OA/OB=OC/OD,是两个三角形的两条对应边,证明三角形OAC与三角形OBD相似即可推出.证明:因为AC||BD,故角A=角B,角C=角D另外角AOC=角BOD(对
因为AD垂直于BD,BC垂直于AC,所以三角形ABD,和三角形ABC都是直角三角形.又因为AC=BD,AB是公共边,根据勾股定理,则AD=BCAC与BD相交于O所以角AOD等于角BOC又角ADO=角B
∵S△AOD/S△AOB=(OD×h)/(OB×h)=OD/OBS△COD/S△COB=(OD×H)/(OB×H)=OD/OB∴S△AOD/S△AOB=S△COD/S△COB
因为AC,BD为正方形ABCD的对角线则AC⊥BDAO=CO角BAC=45º因为EG⊥AC三角形AEG为等腰直角三角形AG=EG因为EF⊥BD所以EFOG为矩形EF=OG因此EG+EF=OG
证明:(以下用---代表推出箭头)四边形ABCD是平行四边形---AD//BC---角MAO=角NCO[1].又四边形ABCD的对角线AC,BD相交于O---AO=OC[2],AC,MN相交于点O--
最简便做法证明:连接AD三角形DAB与三角形ADC全等原因AD=ADAC=BDAB=CD{SSS}接着可以推出∠B=∠C
证明:连接DE、BC∵在△ACE和△ABD中, AE=AD
连接AB再答:要我写过程吗再答:用两次三角形全等就好再问:不用了再问:大神帮忙过程再答:我来写啊再答:等等再问:恩;谢谢你再答:
由题意得:AB=AO=OC=CD,连接OP,则OP为AB中位线,所以:OP∥AB,OP=(1/2)AB=(1/2)OC=OF;显然三角形ABO与三角形COD为等腰三角形,所以∠POD=∠ABO=∠AO
证明:∵AO+BO>AB,DO+CO>CD,∴AO+BO+DO+CO>AB+CD,即AC+BD>AB+CD.
OE=OF证明:∵ABCD是平行四边形∴AB//CD,AO=CO【对角线相互平分】∴∠EAO=∠FCO.∠AEO=∠CFO∴⊿AEO≌⊿CFO(AAS)∴OE=OF图2,不受影响再问:不收影响的原因?
证:ad垂直于bd,bc垂直于ac,则角ADB=角ACB=90°而ac等于bd所以AD²=AB²-BD²=AB²-AC²=BC²即AD=BC
∵∠CAD=∠DBC(△ADC≌△BCD,三边对应相等),同理∠CAD=∠CBD;∠ADC=∠BCD,同理∠BAD=∠ABC;故∠BAO=∠ABO(等量减等量,差相等);∴OA=OB(等角对等边).
证明:∵AB=ADBC=DCAC=AC∴⊿ABC≌⊿ADC∴∠BAC=∠DAC∴AC⊥BD(等腰三角形的顶角平分线也是底边上的高)
∵四边形ABCD是菱形,∴AC⊥BD,OA=1/2AC=5,0B=1/2BD=12,有勾股定理得AB=13,菱形的面积=1/2AC•BD=AE•BC,∴AE=120/13
按题意,可知OM应为CE的一半.如果假设M无限接近于B点,则E也将无限接近于B点,此时OM趋于CE/√2,③并不成立所以你确定题目或答案都没弄错?要是你确定题目没错,那么要敢于质疑参考答案的正确性.因
利用余弦定理cosACB=(AC^2+BC^2-AB^2)/2AC*BC=(OC^2+BC^2-BO^2)/2OC*BC对于矩形对角线是相等的即AC=BD再化简即能解.
由已知可得RT△AOE≌RT△CON,所以ON=OE.RT△BOM≌RT△DOF,所以OM=OF.所以四边形MNFE的对角线MF与NE互相平分,则四边形MNFE是平行四边形,∴MN‖EF.