如图,ac平行de,cd平行ef,cd平分角bca,试说明ef平分角bed
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 08:04:55
证明:延长FD到M,使DM=DF;又DE=CD.则⊿CDM≌⊿EDF(SAS),∠EFD=∠CMD;CM=EF.又EF=AC,则CM=AC,∠CAD=∠CMD.又∠BAD=∠CAD,故∠BAD=∠CA
证明:∵AC∥DE∴∠A=∠D∵BC∥EF∴∠ABC=∠DFE∵AB=AF+BF、DF=DB+BF、AF=DB∴AB=DF∴△ABC≌△DFE(ASA)∴AC=DE
证明:∵EF‖CD∴∠BEF=∠BCD,∠DEF=∠CDE∵DE‖BC∴∠CDE=∠ACD∵CD平分∠ACB∴∠ACD=∠BCD∴∠BCD=∠CDE=∠DEF∴∠BEF=∠DEF即EF平分∠BED
∵BE=CF∴BE+EC=CF+EC即BC=EF∵AB=DE,AC=DF∴△ABC≌△DEF(S.S.S)∵∠B=∠DEF,∠ACB=∠F∴AB∥DE,AC∥DF
∠1=∠2.∵DE∥AC,∴∠1=∠DAC,∵DF∥AB,∴∠2=∠BAD,∵AD是△ABC的角平分线,∴∠BAD=∠DAC,∴∠1=∠2.
△ABF和△DEC.有2边相等,且是直角三角形,所以.2个三角形相似.所以另外一边也相等,也就是AF=CE其次因为相似,所以∠C=∠A所以AB//CD
连接AD因为AB平行ED所以∠DAB=∠ADE又因为AF平行CD所以∠FAD=∠ADC从而可以得到∠A=∠D同理可以证明∠B=∠E∠C=∠F所以∠A+∠C+∠E=内角和的一半6边行内角和为(6-2)*
多年未解过题了,好多定理忘记了,我给个思路吧.可能不规范,你自己润色一下.已知:直角三角形DEC的斜边CD、直角边DE与直角三角形BFA的斜边AB、直角边BF相等.则直角三角形DEC与直角三角形BFA
∵OE∥AB,∴OE/AB=CE/BC,∵OE∥DC,∴OE/DC=BE/BC两者相加:OE/AB+OE/DC=CE/BC+BE/BC因为CE+BE=BC,所以OE/AB+OE/DC=1,两边分别乘以
证明:∵EF‖CD∴∠BEF=∠BCD,∠DEF=∠CDE∵DE‖BC∴∠CDE=∠ACD∵CD平分∠ACB∴∠ACD=∠BCD∴∠BCD=∠CDE=∠DEF∴∠BEF=∠DEF即EF平分∠BED再问
题目的条件有问题,1、修改一:AB=ED,AC=EF,BC=DF,∴由“边边边”可证△ABC≌△EDF,∴∠B=∠D,∴AB∥FD﹙内错角相等,两直线平行﹚.2、修改二:AB=FD,AC=FE,BE=
证明:过E点做AC的平行线交AD的延长线与G,下面证明△EDG与△CDA全等∵∠EDG=∠CDA(对顶角ED=DC(已知)∠DEG=∠DCA(平行线内错角相等)∴△EDG≌△CDA(ASA)∴EG=C
做辅助线AE平行DF∵AB∥EF∴∠A=∠E∵AE∥DF∴∠E=∠F∴∠A=∠F再问:没有∠E再答:不是作辅助线了吗
证明:∵DE⊥AC,BF⊥AC∴∠CED=∠AFB=90º又∵AB=CD,BF=DE∴Rt⊿ABF≌Rt⊿CDE(HL)∴AF=CE∠BAF=∠DCE∴AB//CD【内错角相等】
证明:(1)∵DE⊥AC,BF⊥AC,∴在Rt△DCE和Rt△BAF中,AB=CD,DE=BF,∴Rt△DCE≌Rt△BAF(HL),∴AF=CE;(2)由(1)中Rt△DCE≌Rt△BAF,可得∠C
证明:∵AB∥CD.∴∠AFE=∠D;又FE=DE;∠AEF=∠CED.∴⊿AEF≌⊿CED(ASA),AE=EC.
∠1和∠4相等∵ED//MN∴∠4+∠N=180°∵FA//RN∴∠1+∠4=180°∴∠1=∠4∵FA//RN∴∠6+∠R=180°∠1+∠N=180°∴∠6+∠1+∠R+∠N=360∵∠4+∠6=
证明:∵DE⊥AC,BF⊥AC∴∠CED=∠AFB=90º又∵AB=CD,BF=DE∴Rt⊿ABF≌Rt⊿CDE(HL)∴AF=CE∠BAF=∠DCE∴AB//CD【内错角相等】