如图,AC是⊙O的直径,AB,CD是⊙O的两条弦,且弧AD=弧BC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:36:56
的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°
证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC.又∵AB=AC,∴AD是∠BAC的平分线,即∠1=∠2.∵OA=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥AC.∵DE是⊙O
(1)OD=1/2BC,理由如下:∵AB是直径,O为圆心∴O是AB的中点.又∵OD垂直于AC∴D是AC的中点.∴OD是△ABC的中位线∴OD=1/2BC(2)连接OC,线段OP交圆O于E.∵OD垂直于
嗯...问题是什么啊...你看看是不是这个... (1)求证:PC是⊙O的切线连接OC,则∠OCA=∠FAH∵PC=PF∴∠PCF=∠PFC=∠AFH∴DE⊥AB于H∴∠OCA+∠PCF=∠
(1)△AOC是等边三角形 …(1分)证明:∵AC=CD,∴∠1=∠COD=60°
OD‖BC →△AOD∽△ABC →OD/BC=AO/AB=1:2 &nb
∵AB是⊙O的直径,∴∠ACB=90°,AB=12+(22)2=3.∴sin∠ABD=sin∠ABC=ACAB=223.
答案:π/3-四分之根号三连结OC,BC;直角三角形的ABC的面积容易算是二分之根号3;正三角形OBC的面积用(四分之根号三)乘以边长的平方,可以求得面积等于四分之根号三;扇形BOC的面积是圆O的面积
证明:连接OC,如图所示:∵CD为圆O的切线,∴OC⊥CD,∴∠OCD=90°,∵AC平分∠DAB,∴∠DAC=∠OAC,又OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴AD∥OC,∴∠O
证明:(1)∵CD是⊙O的切线,∴∠OCD=90°,即∠ACD+∠ACO=90°.①(2分)∵OC=OA,∴∠ACO=∠CAO,∴∠AOC=180°-2∠ACO,即∠AOC+2∠ACO=180°,两边
设半径为r,则将BC/AC=5/r代入BC^2+AC^2=4r^2得AC=2r^2/(25+r^2)^0.5BC=10r/(25+r^2)^0.5条件好像不足,无法计算出具体值
∵AB是⊙O的直径,AC是弦,D是AC的中点,∴AD=CD,OA=OB,即OD是△ABC的中位线,∴BC=2OD=2×4=8.
证明:连接OC,∵OD∥AC,∴∠BOD=∠A,∠COD=∠C,∵OA=OC,∴∠A=∠C,∴∠COD=∠BOD,∴CD=BD.
∵AB是⊙O的直径,∴∠ACB=90°;Rt△ABC中,∠ABC=30°,AB=4;∴AC=12AB=2.故选D.
∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD
(1)因为AC是⊙O的直径,AC⊥BD.所以∠BOC=2∠A=30°,于是∠BOD=60°.同时,在直角三角形BOE(E为BD与AC交点)中,设BE=x,于是OE=√3x,OB=2x.那么在直角三角形
(1)连接PO,OB,设PO交AB于D.∵PA,PB是⊙O的切线,∴∠PAO=∠PBO=90°,PA=PB,∠APO=∠BPO.∴AD=BD=3,PO⊥AB.∴PD=52−32=4.在Rt△PAD和R
(1)求证:CD=BD,证明:∵AC∥OD,∴∠1=∠2.∵OA=OD,∴∠2=∠3.∴∠1=∠3.∴CD=BD.∴CD=BD.(2)∵AC∥OD,∴PAPC=AOCD.∵PAPC=56,CD=BD,
(1)证明:∵CE是⊙O的直径,∴∠CAE=90°,∴∠BAC+∠BAE=90°,∵CD⊥AB,∴∠BAC+∠ACD=90°,∴∠BAE=∠ACD,∵∠BAE=∠BCE,∴∠ACD=∠BCE;(2)∵