如图,AD是角ABD的角平分线,DE平行AB,DF平行AC,EF交AD于点O
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:07:46
AD是△ABC的角平分线DE、DF分别是△ABD和△ACD的高所以AD垂直平分EF.
证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF.∴D在线段EF的垂直平分线上.在Rt△ADE和Rt△ADF中,{AD=ADDE=DF,∴Rt△ADE≌Rt△ADF.∴AE=AF.∴A点
∵AD是△ABC的角平分线,∴点D到AB的距离等于点D到AC的距离,又∵AB:AC=3:2,则△ABD与△ACD的面积之比为3:2.故选B.
易证得三角形ade全等于三角形adf所以de=df,ae=af所以ad垂直平分ef
设∠BAD=∠CAD=a,三角形ADB的面积=(1/2)AB*AD*sina,.(1)三角形CAD的面积=(1/2)AC*AD*sina,.(2),(1)/(2),得s(ABD)/S(ADC)=AB/
证法1:AD平分∠BAC,DE垂直AB,DF垂直AC.则DE=DF.又AD=AD,故Rt⊿AED≌Rt⊿AFD(HL),得AE=AF.所以,AD垂直平分EF.(等腰三角形三线合一)证法2:∠AED=∠
(设AD与EF相交于点G)∵AD平分∠BAC∴∠BAD=∠CAD又∠AED=∠AFD=90°,AD=AD∴△AED≌△AFD(AAS)∴ED=FD,∠ADE=∠ADF又DG=DG∴△EDG≌△FDG(
证明:∠△≌AD平分∠BAC∠BAD=∠CAD∠AED=∠AFD=90AD=ADRT△AED≌RT△AFDAE=AF△AEF是等腰三角形AD平分∠BAC所以AD垂直平分EF(等腰三角形三线合一性质)
证AD是三角形ABC的角平分线,DE,DF分别是三角形ABD和三角形ACD的高DE=DF∠DEA=∠DFA=90°AD=AD △AED≌△AFD AE=AF AD是三角形ABC的角平分线
3:2过点D分别向AB、AC作垂线,交AB、AC于点D、E由于角平分线,共线、垂直易证全等,于是可以发现,两个三角形高相等依据AB:AC=3:2和三角形面积公式可求.不懂就问,望采纳.
因为AD是三角形ABC的角平分线,DE、DF分别是三角形ABD和三角形ACD的高所以角EAD和角FAD相等,所以角AED和角AFD相等在三角形AED和三角形AFD中,角EAD=角FAD,角AED=角A
角BAD=角C=36度,角ABD=角DAC=54度,角ABE=1/2角ABD=27度,因此角BEA=180-36-27=117度
如图,过D分别作DE⊥AB于E,DF⊥AC于F,∵AD是它的角平分线,∴DE=DF,而S△ABD:S△ADC=12AB•DE:12AC•DF=AB:AC=4:3.故选C.
1.首先证明角EDC=角ABC=角ABC=>DE=EC等腰三角形2.画一条经过D平行于BC的直线,交AB于F,连接FC角DBC=角FDB,角FBD=角DBC,顺便推导出角DFC=角DCF,说明DFC是
因为△ABC为等腰三角形,则AC=CB,∠CAB=∠CBA.AD、BE分别为∠CAB、∠CBA的角平分线,所以∠DAB=∠EBA有AB=AB,∠CAB=∠CBA则△EBA≌△DAB(ASA)
连接EF与AB相交于O点由题意可知,AD是三角形ABC的角平分线,∴∠BAD=∠CAD又因为DE,DF分别是△ABD和△ACD的高,AD=AD由角边角可知△ADE和△AFD全等,∴DE=DF,AE=A
哪一页?再问:93页第十题再答:
∵AD平分∠BAC(已知)∴∠BAD=∠CAD(角平分线定义)∵DE⊥AB DF⊥AC(已知)∴∠AED=∠AFD=90°(垂直定义)在△AED与△AFD中∠EAD=∠FAD(已证)∠AED=∠AFD
∵AD为角平分线∴DE=DF,∵DE、DF为高、AD=AD∴△ADE≌△ADF(HL)∴AE=AF∴∠AFE=∠AFE又∵∠DEF=20°∴∠AEF=70°∴∠EAF=40°
(1)∵AD为角平分线∴DE=DF(角平分线到两边距离相等)∴∠DEF=∠DFE(等边对等角) (2)△ADE≌△ADF(HL)∴AE=AF