如图,AP.CP分别是△ABC外角∠MAC与∠NCA的平分线,它们相交于点P

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:59:38
如图,AP.CP分别是△ABC外角∠MAC与∠NCA的平分线,它们相交于点P
如图,已知D、E、F分别是锐角△ABC的三边BC、CA、AB上的点,且AD、BE、CF相交于点P,AP=BP=CP=6,

如图:∵S△PBC=12PM•BC,S△ABC=12AN•BC,∴S△PBCS△ABC=PMAN=PDAD=xx+6,同理:S△PACS△ABC=yy+6,S△PABS△ABC=zz+6,∵S△ABC

如图:已知 BP,CP 分别是△ABC 的∠ABC,∠ACB 的外角角平分线,BP,CP 相交 于 P,试探索∠BPC

因为,∠BCE=∠A+∠ABC,∠CBD=∠A+∠ACB所以,∠2=1/2*(∠A+∠ABC),∠1=1/2*(∠A+∠ACB)所以,∠BPC=180-(∠1+∠2)=180-1/2*(∠A+∠ACB

如图,已知三角形ABC中,AB=AC,P是BC边上任意一点,连结AP.求证; AC^2=AP^2+CP×BP

设O为BC中点,链接AO∵AB²=AC²=(BP+PO)²+AO²=(CP-PO)+AO²∴BP+PO=CP-POPO=(CP-BP)/2又∵AP&#

如图,已知三角形ABC是等边三角形,点P是三角形ABC中的任意一点,分别连接AP,BP,CP,且AP=3,BP=4,CP

以PA为边长作等边△PAD,连结BD∵∠PAD=60°=∠BAC∴∠BAD=∠PAC∵AD=AP,AB=AC∴△ABD≌△APC∴BD=PC=5∵PD=PA=3,PB=4∴∠BPD=90°∵∠APD=

Z已知如图CE是RT△ABC的斜边AB上的高,在CE的延长线上任取一点P,连接AP,过点B作BG⊥AP于点G,并交CP于

∵PE⊥BE、PG⊥BG, ∴B、E、G、P共圆, ∴AE×AB=AG×PA,∴AE(AE+EB)=AG×PA, ∴AE^2+AE×EB=AG×PA, ∴AE×EB=AG×PA-AE^2.∵AE⊥PE

如图,在△abc中,ab=ac,点p是bc边上任意一点,是说明ab²-ap²=bp乘cp

从A做BC垂线,交BC于DAB²-AP²=AD²+BD²-(AD²+DP²)=BD²-DP²=(BD+DP)(BD-DP

如图,△ABC中,AB=AC,点P是边上任意一点,试说明AB²-AP²=BP·CP

证:作AD⊥BC,交BC于D则:AB^2=AD^2+BD^2AP^2=AD^2+PD^2∴AB^2-AP^2=BD^2-PD^2=(BD+PD)(BD-PD)=BP·CP

如图,已知:AP,CP分别是△ABC外角∠MAC与∠NCA的平分线,它们交于P,PD⊥BM于D,PF⊥BN于F.&nbs

证明:过点P作PE⊥AC于E∵AP平分∠MAC,PD⊥BM,PE⊥AC∴RT△PDA≌RT△PEA(角角边)∴PE=PD∵CP平分∠NCA,PF⊥BN,PE⊥AC∴RT△PFC≌RT△PEC(角角边)

已知 △ABC中 BP、CP分别是外角∠DBC、BCE的角平分线 求证 AP平分∠BAC

证明:过点P作PM⊥AB于M,PN⊥AC于N,PG⊥BC于G∵PM⊥AB,PG⊥BC,BP平分∠CBD∴PM=PG∵PN⊥AC,PG⊥BC,CP平分∠BCE∴PN=PG∴PM=PN∴AP平分∠BAC

如图,在三角形ABC中,AB=AC,P是BC上任意一点,连接AP,求证:BP×CP=AB²—AP²

从A向BC作垂线,垂点为D,AB^2=BD²+AD^2AP^2=PD^2+AD^2所以,AB^2-AP^2=BD²-PD^2=(BD+PD)(BD-PD)=BP乘CP7月Y4

AP,CP分别是△ABC的外角∠MAC与∠NCA的平分线

证明:在△APD和△APE中因为AP平分∠MAC所以DP=EP,(角平分线的性质)同理PE=PF所以PD=PF所以P在∠MBN的角平分线上所以PB平方∠MBN

三角形ABC中,AP CP分别是外角平分线,证BP是角ABC的平分线

过P作PF⊥AC,交AC于F过P作PE⊥BC,交BC延长线于E过P作PG⊥AB,交AB延长线于G因为AP平分∠GAC,所以PG=PF(角平分线上的点到角两边距离相等)因为CP平分∠ACE所以PF=PE

已知:如图,△ABC全等于△DCB.求证:AP=DP,BP=CP

分析与思路:要证BP=CP,就是要证∠CBP=∠BCP;要证∠CBP=∠BCP,就是要证,△ABC全等于△DCB,而这是已知条件,故BP=CP.另一方面,要证AP=DP,就是要证AC-CP=BD-BP

如图,P是等边△ABC内一点,若AP=3,BP=4,CP=5,求∠BPA的度数

将三角形BPC绕着B点逆时针旋转60度(或者换一个说法,在三角形外取一点Q,使三角形PBD相似于三角形QBA)这时候再连结QP亮点那么很容易得到三角形PQB是正三角形那么QP变长就是4三角形PQA的三

如图在△abc中,ab>ac,ap是角平分线,求证:ab-ac>bp-cp

证明:在AB上截取AD=AC∵∠DAP=∠CAP,AP=AP,AD=AC∴△ADP≌△ACP∴CD=CP在△BDP中根据两边之差小于第三边BP-DP

如图,M,P分别是△ABC的边AB,AC上的点,AM=BM,AP=2CP,BP与CM交于N.求证:BN=3NP.

证明:取AP的中点D,连DM,AM=BM,AD=DP在△ABP中,MD是△ABP的中位线,所以DM=BP/2,MD‖BP又AP=2CP,AP=2DPDP=PC所以在△CMD中,PN是△CMD的中位线,

如图 已知BP,CP是△ABC的外角角平分线且相交于点P,求证:AP平分∠BAC.

过P点分别作AE\AD\BC\的垂线段,垂足分别为XYZ因为BP平公角CBD,所以PY=PZ,(角平分线的性质)同理可得PX=PZ得PX=PY=PZ,则AP平分∠BAC,(角平分线的性质逆定理)

如图,CP、BP分别是三角形ABC的外角平分线,那么AP是否是角CAB的平分线呢?若是,请说明理由.

证明:需要做辅助线,三条垂线,第一,过P向AC作垂线垂足为D,过P向AB坐垂线垂足为E,过P向BC做垂线垂足为F.之后根据外角平分线,角ECP和角BCP相等,加上直角和公共边,便可说明三角形ECP和F

如图,已知:AP,CP分别是△ABC的外角∠MAC与∠NCA的平分线它们交于P,PD⊥BM于D,PF⊥BN于F.求证:B

证明:过点P作PE⊥AC于E∵AP平分∠MAC,PD⊥BM,PE⊥AC∴RT△PDA≌RT△PEA(角角边)∴PE=PD∵CP平分∠NCA,PF⊥BN,PE⊥AC∴RT△PFC≌RT△PEC(角角边)