如图,AP.CP分别是△ABC外角∠MAC与∠NCA的平分线,它们相交于点P
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:59:38
如图:∵S△PBC=12PM•BC,S△ABC=12AN•BC,∴S△PBCS△ABC=PMAN=PDAD=xx+6,同理:S△PACS△ABC=yy+6,S△PABS△ABC=zz+6,∵S△ABC
因为,∠BCE=∠A+∠ABC,∠CBD=∠A+∠ACB所以,∠2=1/2*(∠A+∠ABC),∠1=1/2*(∠A+∠ACB)所以,∠BPC=180-(∠1+∠2)=180-1/2*(∠A+∠ACB
设O为BC中点,链接AO∵AB²=AC²=(BP+PO)²+AO²=(CP-PO)+AO²∴BP+PO=CP-POPO=(CP-BP)/2又∵AP
以PA为边长作等边△PAD,连结BD∵∠PAD=60°=∠BAC∴∠BAD=∠PAC∵AD=AP,AB=AC∴△ABD≌△APC∴BD=PC=5∵PD=PA=3,PB=4∴∠BPD=90°∵∠APD=
∵PE⊥BE、PG⊥BG, ∴B、E、G、P共圆, ∴AE×AB=AG×PA,∴AE(AE+EB)=AG×PA, ∴AE^2+AE×EB=AG×PA, ∴AE×EB=AG×PA-AE^2.∵AE⊥PE
从A做BC垂线,交BC于DAB²-AP²=AD²+BD²-(AD²+DP²)=BD²-DP²=(BD+DP)(BD-DP
证:作AD⊥BC,交BC于D则:AB^2=AD^2+BD^2AP^2=AD^2+PD^2∴AB^2-AP^2=BD^2-PD^2=(BD+PD)(BD-PD)=BP·CP
证明:过点P作PE⊥AC于E∵AP平分∠MAC,PD⊥BM,PE⊥AC∴RT△PDA≌RT△PEA(角角边)∴PE=PD∵CP平分∠NCA,PF⊥BN,PE⊥AC∴RT△PFC≌RT△PEC(角角边)
证明:过点P作PM⊥AB于M,PN⊥AC于N,PG⊥BC于G∵PM⊥AB,PG⊥BC,BP平分∠CBD∴PM=PG∵PN⊥AC,PG⊥BC,CP平分∠BCE∴PN=PG∴PM=PN∴AP平分∠BAC
从A向BC作垂线,垂点为D,AB^2=BD²+AD^2AP^2=PD^2+AD^2所以,AB^2-AP^2=BD²-PD^2=(BD+PD)(BD-PD)=BP乘CP7月Y4
证明:在△APD和△APE中因为AP平分∠MAC所以DP=EP,(角平分线的性质)同理PE=PF所以PD=PF所以P在∠MBN的角平分线上所以PB平方∠MBN
过P作PF⊥AC,交AC于F过P作PE⊥BC,交BC延长线于E过P作PG⊥AB,交AB延长线于G因为AP平分∠GAC,所以PG=PF(角平分线上的点到角两边距离相等)因为CP平分∠ACE所以PF=PE
分析与思路:要证BP=CP,就是要证∠CBP=∠BCP;要证∠CBP=∠BCP,就是要证,△ABC全等于△DCB,而这是已知条件,故BP=CP.另一方面,要证AP=DP,就是要证AC-CP=BD-BP
将三角形BPC绕着B点逆时针旋转60度(或者换一个说法,在三角形外取一点Q,使三角形PBD相似于三角形QBA)这时候再连结QP亮点那么很容易得到三角形PQB是正三角形那么QP变长就是4三角形PQA的三
证明:在AB上截取AD=AC∵∠DAP=∠CAP,AP=AP,AD=AC∴△ADP≌△ACP∴CD=CP在△BDP中根据两边之差小于第三边BP-DP
证明:取AP的中点D,连DM,AM=BM,AD=DP在△ABP中,MD是△ABP的中位线,所以DM=BP/2,MD‖BP又AP=2CP,AP=2DPDP=PC所以在△CMD中,PN是△CMD的中位线,
过P点分别作AE\AD\BC\的垂线段,垂足分别为XYZ因为BP平公角CBD,所以PY=PZ,(角平分线的性质)同理可得PX=PZ得PX=PY=PZ,则AP平分∠BAC,(角平分线的性质逆定理)
证明:需要做辅助线,三条垂线,第一,过P向AC作垂线垂足为D,过P向AB坐垂线垂足为E,过P向BC做垂线垂足为F.之后根据外角平分线,角ECP和角BCP相等,加上直角和公共边,便可说明三角形ECP和F
证明:过点P作PE⊥AC于E∵AP平分∠MAC,PD⊥BM,PE⊥AC∴RT△PDA≌RT△PEA(角角边)∴PE=PD∵CP平分∠NCA,PF⊥BN,PE⊥AC∴RT△PFC≌RT△PEC(角角边)