如图,BD为圆O的直径,点A是弧BC的中点,AD交
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:18:19
连接OD,∵C是弧BD的中点,∴∠COD=∠COB,∵∠A=∠1/2∠DOB,∴∠A=∠COB,∴OC‖AD
(1)延长CE交圆于M,则弧CD=弧CB=弧BM∴∠BCM=∠CBD∴CF=BF(2)连结OC交BD于N则△CFN≌△BFE∴BE=CN=3-1=2又OE=1∴CE=2√2∴BC=2√3
(1)连接OC,因为角DB0=角COP,又因为角COP=2倍角CBO,所以角DBC=角CBO.可以证明三角形DBC与三角形CBA相似,可以得到DB:BC=CB:BA,=>BC^2=BD*BA(2)连接
(1)连接OC,OE,O和E分别为AB和BD中点,所以OE//AD,即
过点A作AE⊥BC于E,连结AD则E为BC的中点由△ABE∽△DBA可得:AB^2=BD·BE=BD·1/2BC=4BC∴BC=1/4AB^2即有:Y=1/4X^2
答案如下图,请稍等,百度传图有点慢
连接AD,则AD⊥BC,∵BD=CD,∴AB=AC,∠BAD=∠CAD=1/2∠BAC.°∵∠EBC=20°,∴∠EAD=20°即∠CAD=20°,∴∠BAC=2∠CAD=40°;(2)证明:由(1)
1、连接CO,直角三角形POC中,PO=2CO=1,直角边为你斜边的一半,所以角P=30度.2、连接AE,直角三角形ABE中角P=30度,BD=0.5PB=1.5,直角三角形PBD中,角EAB=30度
1)连接DO'角O'DB是直角,设大圆半径R小圆半径r,则BD平方=O'B平方-DO'平方即为BD平方=(2R-r)平方-r平方整理得BD平方=4R平方-4Rr因为CE垂直AB,可用射影定理得EB平方
证明:连接OC.∵OD⊥BC,O为圆心,∴OD平分BC.∴DB=DC,在△OBD与△OCD中,OB=OCDO=DODB=DC∴△OBD≌△OCD.(SSS)∴∠OCD=∠OBD.又∵AB为⊙O的直径,
韦达定理:关于x的一元二次方程ax²+bx+c=0的两根x1,x2满足x1+x2=-b/a,x1•x2=c/a设x²-2(m+2)x+2m&su
连接BC、AD因为AB是直径所以AD垂直BE、AC垂直BC因为∠EFA=∠ACB=90度且∠EAF=∠BAC所以三角形AFE相似与三角形ABC所以AE*AC=AB*FA又AE*AC=AB*(FB-AB
(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°.∵DC=BD,∴AB=AC.∵∠BAC=60°,由(1)知AB=AC,∴△ABC是等边三角形.在Rt△BAD中,∠BAD=30°,AB=8
1.连接AD,因为AB为直径,所以∠ADB=90(圆周角),所以ADBC,又因为DC=BD,所以ΔABC为等腰三角形,AB=AC.2.连接OD.则OD=OB,所以∠B=∠ODB.因为∠B=∠C,所以∠
作B关于MN的对称点F,连OB,OA,根据勾股定理得:OD=8,OC=6,CD=14,连AF与MN相交于一点即为符合题意的P点,过F作MN的平等线交AC的延长线于H,则直角三角形AFH中,FH=DC=
连接OC,OD三角形OPC中,PC=PO则∠C=∠POC又OC=OD所以∠C=∠PDOBD弧所对的圆心角BOC=∠PDO+∠OPD=∠PDO+∠C+∠POC=3∠CAC弧所对的圆心角为∠C所以弧AC=
(1)证明:如图,连接AC,∵点A是弧BC的中点,∴∠ABC=∠ACB,又∵∠ACB=∠ADB,∴∠ABC=∠ADB.又∵∠BAE=∠BAE,∴△ABE∽△ABD;(2)∵AE=2,ED=4,∴AD=
证明:∵BD、PD是圆O的切线∴∠PCO=∠PBD=90º又∵∠OPC=∠DPB【公共角】∴⊿OPC∽⊿DPB(AA’)∴PO/PD=PC/PB∴PO×PB=PC×PD
连接OE,则有∠OEB=∠OBE,已知∠CBE=∠DBE,故∠OEB=∠CBE,得OE‖BC,∠OEA=90°.∵∠OEA=90°∴OE⊥AC又∵E是○O上的点,那么AC是切线.2)∵OE⊥AC∴AO