如图,bd垂直于am,ce垂直于an
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:14:31
在直角三角形ABD中有:cosA=AD/AB;在直角三角形AEC中有:cosA=AE/AC;所以AD/AB=AE/AC又因:角A=角A所以ADE相似于ABC所以角ADE=角ABC.
延长AM交BC于点F,延长AN交BC于点G因为BD是角ABC的平分线,AN垂直BD所以角ABN=角GBN,角ANB=角GNB=90度因为BN=BN所以三角形BNA全等于三角形BNG所以AN=GN同理C
图呢?先证明两个直角三角形相等!再∵AB垂直BD于点B,ED垂直BD于点D,C是BD上一点∴△ABC和△CDE都是直角三角形∵AC=CE,AB=CD∴△ABC≌△CDE(斜边直角边定理)∴∠BAC=∠
(1)证明:分别延长AM,AN分别交BC及BC的延长线于G,H因为AM垂直BF于M所以角AMB=角GMB=90度因为BF是三角形ABC的角平分线所以角ABM=角GBM因为BM=BM所以三角形ABM和三
(1)AB=AC所以角ABC=角ACB所以角ACM=角ABN因为角M=角N所以三角形ABN全等于三角形ACM所以AM=AN(2)因为角BAC等于36度所以角ABC=角ACB=72度所以角ACM=角AB
因为两个三角形为直角三角形,所以角A+角ACB=90°,因为AC垂直于CE,所以角ACB+角DCE=90°,所以角A=角DCE.又因为角B=角D=90°,AB=CD,所以三角形ABC全等于三角形CDE
由AO平分∠BAC,∴∠BAO=∠CAO,又AO是公共边,∴AO=AO,∠AEO=∠ADO=90°,∴△AEO≌△ADO(AAS)∴EO=DO,∵∠EOB=∠DOC,∴△EOB≌△DOC(ASA)所以
才再答:证明:∵CD⊥AB于D,BE⊥AC于E∴∠CEO=∠BDO=90°∵∠BOD=∠COE∵BD=CE∴△BOD≌△COE∴OD=OE又∵CD⊥AB于D,BE⊥AC于E∴AO平分∠BAC
证明:因为AB=AC所以∠ABC=∠ACB在Rt△BEC和Rt△BCD中BC=BC∠EBC=∠DCB所以Rt△BEC≌Rt△BCD(一边一锐角对应相等的两个直角三角形全等)所以BD=CE(全等△对应边
证明:∵△ABC面积=1/2*BD*AC=1/2*CE*AB∴BD:AB=CE:AC∵BD⊥AC,CE⊥AB∴△ABD与△ACE为直角三角形在直角三角形∠△ABD与直角三角形∠△ACE中,BD:AB=
角BEC=角ADB,所以三角形ABD与三角形HBE相似角ABD=90-角BHE=90-角BAC故角BAC与角BHE相等
相似三角形DE除CD等于BC除ABAB等于4
因为AB垂直BD,ED垂直BD,所以角B=角D=90度,又因为AB=CD,BC=DE,所以三角形abc全等于三角形cdb,所以角a=角ecd又因为角a+角acb=90度,所以角ecd+角acb=90度
证明:延长AM、AN分别交BC于点P、Q,∵MC是∠ACB的平分线,AM⊥CE∴AM=MPAC=PC同理可得:AP=PQAN=NQ∵AM=MPAN=NQ∴MN是△APQ的中位线∴MN=1/2PQ又∵P
AC垂直于CE∵AB⊥BD,ED垂直BD∴∠ACB=90,∠ECD=90∵AB=CD,AC=AE∴ACB≌CED∴∠BAC=∠DCE∵∠BAC+∠ACB=90∴∠ACB+∠DCE=90∴∠ACE=90
证明:延长CE交BA的延长线于F,∵∠EBC=∠EBF,∠BEC=∠BEF=90°,BE=BE,∴ΔBEC≌ΔBEF,∴CE=EF,∴CF=2CE∵∠BAC=90°,∴∠F+∠ACF=90°∵BE⊥C
因为角AEF=角EFCAD=BC角ADB=角CBD所以△BFC全等于△AEDAE=FC