如图,BD是圆O的圆心角,角AOB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:26:32
连DO,DCBC为直径,CD垂直ADE为斜边中点,DE=CE,∠ECD=∠CDE(1)OD=OC,∠ODC=∠OCD(2)DE为切线,∠ODE=∠ODC+∠CDE=90度(1),(2)代换,∠OCD+
木分啊.[1].连接AC、OC、BC弧BC=弧CD,所以角DAC=角DAC,又因为角BAC=角OCA所以角DAC=角ACO,所以AD平行OC,所以角DAB=角COB三角形ADB与三角形OEC皆为直角三
∵四边形AEOD中∠AEO=∠ADO=90度四边形内角和=360度∴∠A+∠EOD=180度∵∠BOC=∠EOD(对顶角)∴∠A+∠BOC=180度
证明:∵BD⊥AC CD⊥AB &n
因为AB是直径所以∠ADB=90度又因为∠DAB=∠DCB=30度所以DB=1/2AB=1/2*6=3(30度角所对的直角边是斜边的一半)再问:谢谢啦再答:满意请采纳。再问:嗯嗯再问:好啦再问:还有了
第一题:因为两条弦互相垂直且相等,所以AD=BC,∠CAD+BAD=90°;连接CD,则弧AD和弧BC所对圆周角为(180°-90°)/2=45°;所以圆半径R=2AD/sin45°=2*2√2*√2
连DO、CO、AO,∠ACB=90°,AD=BD,根据直角三角形斜边上的中线等于斜边的一半,可得DA=DC,又DO=DO,OA=OC,因此△DOA≌△DOC,∴∠DCO=∠DAO=90°,∴CD是切线
(1)证明:连接AC,则∠ACB=90°,易证∠BCF=∠BAC∵C是弧BD的中点∴弧BC=弧CD∴∠BAC=∠CBF∴∠CBF=∠BCF∴BF=CF(2)连接OC,交BD于点M∵C是弧BD的中点∴O
连结AD,∵弧AC所对的圆心角为100°,BD所对的圆心角为20°,∴∠BAD=10°,∠ADC=50°,(同一劣弧所对的圆周角等于其圆心角的一半)∵∠ADC为三角形ADP的外角,∴∠P=50°-10
韦达定理:关于x的一元二次方程ax²+bx+c=0的两根x1,x2满足x1+x2=-b/a,x1•x2=c/a设x²-2(m+2)x+2m&su
因为弧bad所对圆周角为100°弧bad所对的圆心角为200°所以弧bcd所对圆心角为160°圆周角为80°定理:同弧所对圆周角等于圆心角一半
圆周角是圆心角的一半所以∠BOD=2∠BCD所以大角∠BOD=200度由于圆周角为360度,所以小角∠BOD=160度所以∠BAD=80你还可以用另一种方法解
圆周角是圆心角的一半所以∠BOD=2∠BCD所以大角∠BOD=200度由于圆周角为360度,所以小角∠BOD=160度所以∠BAD=80
1)连AD,则∠ADB=90,即:AD⊥BC而BD=CD即:AD在三角形BAC中既是高又是中线所以,BAC是等腰三角形AB=AC2)显然,∠B=∠C
令BD与圆的切点为E连接OE∵OE=OA=r,BA=BE,OB=OB∴△BOA全等△BOE∴∠BOA=∠BOE,即∠BOE=1/2∠AOE同理,∠DOC=∠DOE,即∠DOE=1/2∠COE∴∠BOD
连OC因为∠BCA=90,∠A=30所以∠ABC=60°因为OC=OB所以△OBC是等边三角形所以∠BCO=60,BC=OB,因为BD=OB所以∠D=∠DCB,因为∠ABC=∠D+∠DCB所以∠DCB
∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD
△AOB中OA=OB=AB∴△AOB是等边三角形∠AOB=60°∴点o到ab的距离:3√3(等边三角形的高)
连接OE,则有∠OEB=∠OBE,已知∠CBE=∠DBE,故∠OEB=∠CBE,得OE‖BC,∠OEA=90°.∵∠OEA=90°∴OE⊥AC又∵E是○O上的点,那么AC是切线.2)∵OE⊥AC∴AO