如图,BE,CF分别是三角形的中线,且BE等于CF,AM垂直CF于M
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:04:06
∵BE∥CF,∴∠GBE=∠DCF,∠E=∠DEC,∵BE=CF,∴ΔDBE≌ΔDCF,∴BD=CD,∴AD中ΔABC的中线.
因为角ABE+角A=90度角ACF+角A=90度所以角ABE=角ACF角A=角A所以三角形ABE相似于三角形ACF所以AB比AC=AE比AF角A公用所以三角形AEF相似于ABC
亲爱的楼主:连结DE、DF∵BE、CF是高∴△BEC、△CFB都是RT△∵D是BC中点∴DE=DF=1/2BC又∵G是EF中点∴DG⊥EF祝您步步高升期望你的采纳,谢谢
以BC为直径做圆,M为BC中点,则M为圆心因为角BFC与角BEC均为90度,可知EF两点均在以BC为直径的圆上那么ME、MF均为该圆半径,长度相等所以三角形FME是等腰三角形.
(1)已知:cf,be为ab,ac的高则cf⊥ab,de⊥ac在△afc与△aeb中∵∠cfa∶∠bea=90°,∠a=∠a∴△afc相似于△aeb∴af∶ae=ab∶ac在△afe与△abc中∵∠a
证明:(1)∵BE,CF是高∴∠CFA=∠BEA=90°∴∠ACQ+∠CAB=∠PBA+∠CBA=90°∴∠ACQ=∠PBA∵AC=PBQC=AB∴⊿ACQ≌⊿PBA∴AQ=AP(2)∵⊿ACQ≌⊿P
aas因为cf//be∴∠bef=∠cfe∵d是中点∴bd=dc∵∠bda=∠cde(对顶角)∴相似
(1)∵∠A=∠A,∠AFC=∠AEB=90°∴△AFC∽△AEF∴AF比AE=AB比AC∴AF比AB=AE比AC∴三角形abc相似于三角形aef(2)∵∠AEB=90°,∠A=60°∴AE比AB=1
请问您是不是要求DM⊥EF?辅助线:连接DF,ED.∵BE⊥AC,CF⊥AB.∴RT△CFB,RT△EBC又∵D是斜边BC的中点.∴DF=DE(定理:RT△斜边中线是斜边的一半).∴等腰△DFE.∵M
证明:(1)因为BE,CF分别是ACAB两边上的高,那么有∠BAC+∠ABD=90°=∠BAC+∠GCA又有BD=AC,CG=AB所以有△ACG≌△DBA所以有AD=AG(2)由于△ACG≌△DBA,
求证什么?是证AD=AG吗?这样证明:∵BE,CF分别是AC,AB边上的高,∴∠ABE+∠BAC=90°,∠ACG+∠BAC=90°∴∠ABE=∠ACG,又∵BD=AC,BA=CG,∴△ABD≌△GC
证明:延长FD到点G,使DG=DF,连接EG,BG∵AD=DC,∠BDG=∠CDF∴△BDG≌△CDF∴GD=DF,BG=CF∵ED⊥FG∴EF=FG在△BEG中,BG+BE>FG∴BE+CF>EF
AB=ACBAD=DAC△ADE,△ADFBAD=CADAD=ADAED=AFD△ADE全等,△ADFAF=AEBE=CF
∵BE、CF是高,∴∠ABM+∠BAC=90°,∠ACN+∠BAC=90°,∴∠ABM=∠ACN,在ΔABD与ΔACG中,AB=CN,∠ABM=∠ACN,BM=AC,∴ΔABM≌ΔACN(SAS),∴
性质:直角三角形斜边上的中线等于斜边的一半因为M是BC的中点在直角三角形BFC中FM=1/2*BC在直角三角形BFC中EM=1/2*BC所以FM=EM所以三角形FME是等腰三角形
EF是三角形ABC中BC边的中位线,EF平行BC,EF=1/2BC,MN是三角形OBC中BC边的中位线,MN平行BC,MN=1/2BC,EF和MN平行且相等,四边形MNEF是平行四边形FM、EN平行且
能给图吗再问:传不上去就是个普通的三角形三角形顶点为A2底角从左至右分别为B、C在AB上有一点F在AC上有一点E在BC上有一点M连接CF、EM、BE使∠AFC为90°、∠AEB为90°就只能描述成遮阳
证明△AGC和△ADB全等.(1)△CFA和△ABE有2个公共角(∠BAC和∠CAB,∠AFC和∠AEB),所以∠ABE=∠ACG.又因为BD=AC,CG=AB.△AGC和△ADB全等(SAS).所以
连接MF,ME.在直角三角形BFC中,因为FM是斜边BC上的中线,所以FM等于0.5BC,同理,EM等于0.5BC,所以FM等于EM.所以三角形FME是等腰三角形,又因为N是底边FE的中点,由三线合一