如图,be,cf是△abc的角平分线,an垂直be
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 01:10:34
AD是△ABC的中线.理由如下:∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BDE和△CDF中,∠BED= ∠CFD∠BDE=∠CDFBE=CF∴△BDE≌△CDF(AAS)
(1)AD是△ABC的中线∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°∵BE=CF,∠BDE=∠CFD ∴△BDE≌△CFD(AAS)∴BD=CD,即AD是△ABC的中线.(2)过点B作BG
三角形BEC和三角形CBF是直角三角形BC=BCBE=CF所以全等
证明:延长AN、AM分别交BC于点D、G.∵BE为∠ABC的角平分线,BE⊥AG,∴∠BAM=∠BGM,∴△ABG为等腰三角形,∴BM也为等腰三角形的中线,即AM=GM.同理AN=DN,∴MN为△AD
(1)证明:∵OB、OC分别平分∠ABC,∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠BOC=180°-∠OBC-∠OCB=180°-12(∠ABC+∠ACB)=180°-12(1
∵△ABC为等边三角形,且AD=BE=CF∴AF=BD=CE,又∵∠A=∠B=∠C=60°,∴△ADF≌△BED≌△CFE(SAS),∴DF=ED=EF,∴△DEF是一个等边三角形.再问:可以再具体些
我来回答∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD.∵∠BDE=∠CDF,BE=CF,∴△BED≌△CFD.∴BD=CD.∴AD是△ABC的中线.
证明:∵△ABC是等边三角形∴∠EAF=∠EBD=60°,AB=BC=AC∵AD,BE,CF分别平分∠BAC,∠ABC,∠ACB∴AF=BF=二分之一AB,AF=二分之一AC,BD=二分之一BC∴AF
证明:连接EF.∵E、F分别是AC、AB的中点,∴EF‖BC,EF=1/2BC.(1)是(2)平行四边形
相等因为AD是△ABC的中线所以D是BC的中点所以BD=CD因为BE‖CF所以∠EBD=∠FCD(两直线平行,内错角相等)在△BDE和△CDF中,BD=CD,∠EBD=∠FCD,∠BDE=∠CDF(对
AD、BE、CF是等边三角形ABC的角平分线,又由等边三角形四线合一(中线,角平分线,中垂线,高线),所以D,E,F为中点,那么DE,DF,EF为中位线,又因为AB=AC=BC所以DE=DF=EF.即
(字母写错了,应该是AD,BF,CE是等边三角形ABC的角平分线)证明:∵△ABC是等边三角形∴∠EAF=∠EBD=60°,AB=BC=AC∵AD,BF,CE分别平分∠BAC,∠ABC,∠ACB∴AE
用内心来证明如图作ML‖BCMN‖ACLN‖AB因为BE⊥AC所以BE⊥MN同理有FC⊥LNAD⊥ML可知四边形ABCN为平行四边形又∠BCN=∠ABC∠MAB=∠ABC则∠BCN=∠MAB则△MAB
∵在△ABC中,BE,CF是高∴∠BFC=∠BEC=90°∵D是BC的中点∴DF=½BC=DE(直角三角形斜边上的中线等于斜边的一半)∵G是EF的中点∴DG⊥EF﹙等腰三角形三线合一性质)明
是;平行四边形;1;3\2;16
AD是△ABC的中线.理由如下:∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°(1分)又∵BE=CF,∠BDE=∠CDF,∴△BDE≌△CFD(AAS).∴BD=CD,即AD为△ABC的中线;
证:∵BE⊥AD,CF⊥AD∴BE//CF∴∠DCF=∠DBE又∵∠CDF=∠BDE,BD=CD∴△CDF≌△BDE(两角夹边)∴BE=CF.证毕.
如图所述证明BD=CD=AE=EC=AF=BF之后再证明三角形BDF.DEC.AFE全等所以FE=FD=DE所以三角形DEF为等边你的明白?
∵AB、BE、CF是等边△ABC的角平分线.∴AD⊥BC,BE⊥AC,CF⊥AB,D、E、F是等边三角形三边的中点,∴EF∥BC,DE∥AB,DF∥AC,∴△AEF、△BDF、△DEC是等边三角形,∴