如图,CF垂直AB于F,ED处置AB于D,角1=角2,求证
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:13:06
已知AC平分角BAD,所以角ACB=角ACD;又因为:CE垂直AB于E,CF垂直AD于F,所以角ACE=角ACF,CE=CF所以角ECB=角FCD所以三角形BCE全等于三角形DCF
证明:如图,连接DE、DF∵BE⊥AC∴△BCE为直角三角形∵D为BC的中点∴DE=1/2BC(直角三角形斜边上的中线等于斜边的一半)同理,DF=1/2BC∴DE=DF即△DEF为等腰三角形∵H为EF
∵BF⊥ACCE⊥AB∴∠BED=∠AED=∠CFD=∠AFD∵∠EDB=∠CDF∠BED=∠CFDBE=CF∴△BED≌△CFD∴DE=DF∵DE=DFAD=AD∠AED=∠AFD∴△AED≌△AF
连接AC和AD∵AB=AEBC=DE∠B=∠E∴△ABC≌△AED(SAS)∴AC=AD∵AF⊥CD即△ACF和△ADF是直角三角形AF=AFAC=AD∴RT△ACF≌△ADF(HL)∴CF=DF
连接AC、AD∵AB=AE,BC=ED,∠B=∠E∴△ABC≌△AED∴AC=AD又∵AF=AFAF⊥CD∴△ACF≌△ADF∴CF=DF不知道对不对撒
在Rt△AFC与Rt△AEB中∠A=∠A∠AEB=∠AFC所以,Rt△AFC∽Rt△AEBAF:AC=AE:AB即AF:AE=AC:AB且∠A=∠A所以,△AFE∽△ACB∠AEF=∠ABC
证明:(1)∵AF⊥CD于F,CF=DF,∴△ACD为等腰三角形.∴AC=AD.(2)∵AC=AD,AB=AE,BC=ED,∴△ABC≌△AED(SSS).∴∠B=∠E.
AB=ACBAD=DAC△ADE,△ADFBAD=CADAD=ADAED=AFD△ADE全等,△ADFAF=AEBE=CF
证明:∵AB⊥BE,DE⊥BE∴∠ABC=∠CED=90º又∵AB=CE,BC=DE∴⊿ABC≌⊿CED(SAS)∴∠A=∠DCE∵∠A+∠ACB=90º∴∠DCE+∠ACB=90
一:由CD=CF推得∠F=∠CDF又有对顶角相等推知∠ADE=∠CDF于是∠F=∠ADE,再有∠AED和∠BEF均为直角,由三角形相似或者内角和180度都可推得∠A=∠B即为等腰三角形二:若要等腰三角
CD=BC在三角形ACF与ACE中,角1=角2,AC=AC,再加两个直角,两个三角形相似所以CF=CE,在三角形CDF与CEB中,又BE=DF,两个直角,两个三角形相似所以CD=BC
)请及时点击采纳为【满意回答】按钮 再问:满意再答:你的采纳是我前进的动力!如还有新的问题,请另外向我求助,答题不易,谢谢支持…再问:
∵四边形ABCD是平行四边形∴CD∥AB,∠A=∠C又∵DE⊥AB∴DE⊥CD又∵∠EDF=45°,CF=2,DF⊥BC∴DF=CF=2,∠FDC=45°,DC=2√2∴∠A=∠C=45°又∵BF=1
由题,菱形,知道AD=AB,要证明AE=AF即证BE=DF,只需要证明三角形DFC和三角形BEC全等即可.(利用A(直角)A(角DCF和角BCE等)S(CD=CB)即可证明)
证明:∵CF⊥AB,ED⊥AB,∴DE∥CF,∴∠1=∠BCF,∵FG∥BC,∴∠2=∠BCF,∴∠1=∠2.
证明:∵∠E=∠DFC=90°,BD=CD,BE=CF.∴Rt⊿DEB≌Rt⊿DFC(HL).∴DE=DF.故:AD平分∠BAC.同理可证:Rt⊿AED≌Rt⊿AFD(HL).∴AE=AF.∴AB+A
证明:∵BF⊥AC,CE⊥AB∴∠AEC=∠AFB=90,∠BFC=∠CEB=90∵BE=CF,∠BDE=∠CDF∴△BDE≌△CDF(AAS)∴DE=DF∵AD=AD∴△ADE≌△ADF(HL)∴∠