如图,c为线段bd上的一个动点,分别过点B,D在BD两侧作AB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:09:52
∵AB=CD,AF=CE,∠AFB=∠CED=90°∴△ABF≌△CDE∴BF=DE∵DE⊥AC于E,BF⊥AC于F∴BF∥DE∴∠MBF=∠EDM又∵∠AFB=∠CED,BF=DE∴△BMF≌△DM
0-1当然可以小于4/3注意到△BAD∽△CED当值恰好为4/3时设AD=x,AC=AB=a,那么CE=CDsin(∠CDE)=(a-x)sin(∠BDA)=(a-x)*a/BD而BD*BD=(a*a
AD=CD?写错了吧,是不是AB=CD,或者AD=CB?再问:是AB=CD再答:利用全等三角形即可证明两问当中,M是BD和EF中点。第一问:AB=CD,AF=CE,角AFB=角CED=90,则ABF全
答案就是MB=MDMF=ME图2的结果也一样再问:有没有过程?再答:因为BF、DE垂直与AC,AB=CD,AF=CE,所以三角形AFB=三角形CED(直角三角形对等定理),所以BF=DE。因为BF、D
∵DE⊥AC于点E,BF⊥AC于点F∴∠AFB=∠CED=90∴△AFB和△CED是直角三角形∵AB=CDAF=CE∴△AFB≌△CEDHL∴DE=BF∵∠DME=∠BMF∠DEM=∠BFM=90DE
有你想要的再问:不是一个题好不好再答:方法是一样的再问:我看不了啊再答:(1)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中
如图,设AB=AC=2,则BC=2√2.(1)∵D是AC的中点, ∴AD=CD=1.在Rt△ABD中,由勾股定理得:BD=√5.又∵Rt△ABD∽Rt△ECD,∴CE/CD=AB/BC,CE
如图,设AB=AC=2,则BC=2√2.(1)∵D是AC的中点, ∴AD=CD=1.在Rt△ABD中,由勾股定理得:BD=√5.又Rt△ABD∽Rt△ECD,所以有CE/CD=AB/BC,C
(1)由于三角形内三角和为180°,所以∠BAC为60°,那么∠DAB=30°,∠ADC=65°.由于PE垂直AD的关系,∠E为25°.(2)猜想,∠E是∠B与∠ACB角度差的一半.证明,由题意,可以
相似三角形△ABD相似△MAD(两个角相等)所以BD/AD=AD/MD又M为中点-->BD=2MD代入得出AD*AD=2MD*MD△ADB中AB*AB+AD*AD-2ABADcos60=BD*BD将A
连接OD,PD=PE,∠PDE=∠PED,又∠PED=∠CEB,所以,∠CEB=∠PDE,OD=DB=半径,∠OBD=∠ODB∠ECB=90,∠CEB+∠OBD=90,∠PDE+∠ODB=90,即OD
(1)在Rt△AEB中,C为斜边中点,根据直角三角形斜边中线定理,CE=CB=CA.从而得出:∠CAE=∠CEA.①因为BE⊥AD,所以∠CBF=∠CEF;在△CBF和△CEF中:CE=CB,∠CBF
因为DG=DC=AD所以三角形ADG是等腰的可以把这个三角形分离出来看连接HD因为HE⊥AD,HF⊥BD所以可以看作HE和HF分别是AHD和GHD两个三角形的高因为这两个小三角形的面积和是不变的(即三
A—M—C——D—N—B∵M是AC的中点∴MC=AC/2∵N是BD的中点∴DN=BD/2∵AC+CD+BD=AB∴AC+BD=AB-CD∴MN=MC+CD+DN=CD+(AC+BD)/2=CD+(AB
这个明显A、C、E在一条直线上,AC+CE值最小嘛再问:过程能不能详细点再答:把A和E连起来,A、C、E三点就构成了一个三角形,根据三角形定理,两边之和大于第三边,所以只要这三个点不在一条直线上,AC
证明如下:(1)因为△AOB为等边三角形,所以OB=AB;因为△BPC为等边三角形,所以BP=BC;所以:角OBA=OBP+PBA=PBC=PBA+ABC=60度所以OBP=ABC所以△OBP与△AB
因此,三角形△OBAPOB是直角三角形△OBA是一个直角三角形;P点在第一象限,所谓的角度POB不会成直角;(1)当角度OPB成直角时,有两种情况:一种是角度PBO=的ABO角=60°在这一点上,在A
OM的最小值就是弦心距,即OM⊥AB,根据垂径定理:AM=√(OA^2-OM^2)=6,∴弦AB=2AM=12㎝.
设AP=X,则BP=10-X∵M为AP中点,N为BP中点∴MP=1/2AP=1/2X,NP=1/2BP=5-1/2X∴MN=MP+NP=1/2X+5-1/2X=5所以MN的长度恒为5,不改变.