如图,L1,L2,L3相交于点0,∠1=∠2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:44:42
(1)∠1+∠2=∠3;理由:过点P作l1的平行线,∵l1∥l2,∴l1∥l2∥PQ,∴∠1=∠4,∠2=∠5,∵∠4+∠5=∠3,∴∠1+∠2=∠3;(2)同理:∠1+∠2=∠3;(3)同理:∠1-
答案:∠2=∠1+∠3证明:从P点作L1、L2的平行线L3,交CD于点O则:∠2=∠CPO+∠DPO∵L1∥L2∥L3∴∠1=∠CPO,∠3=∠DPO∴∠2=∠1+∠3(2)如果点P在A,B两点之间运
因L1‖L2‖L3,所以AD‖BE‖CF,ACFD为梯形,因此AB:DE=BC:EF
α∩β=l1β∩γ=l2γ∩α=l3l1∩l2=P(下面证明p∈l3,思路是:把两线的交点证到第三条线上去)因为l1∩l2=P所以①P∈l1,并且②P∈l2①因为l1=α∩β所以P∈α②因为l2=β∩
AB长为6.通过E点做AC的平行线交L1于G,交L3于H,GE=AB,GH=AC=15GE:EH=DE:EF=2:3,则GE:GH=2:5,GH=15则GE=6,AB=6
(1)∠1+∠2=∠3由P点做l5//l1,因为l1//l2,由平行线的传递性可以知道,如果两条直线都与第三条直线平行,那么这两条直线也互相平行.所以l2//l5设l5把∠3分成∠4和∠5(∠4在l5
(1)作PE平行l1,l2所以∠1=∠CPE,∠2=∠EPD因为∠3=∠CPE+∠EPD所以∠3=∠1+∠2(2)不发生变化(3)①当P点在A的上方时,作PF平行l1,l2所以∠1=∠FPC,∠FPD
平行线等分线段成比例,AB/BC=DE/EF推出结论
1,设PCD=∠1,∠PDC=∠2;那么∠ACP+∠1+∠2+∠PDB=180°.又因为∠1+∠2+∠CPD=180°,得∠ACP+∠PDB=∠CPD.2,P在AB两点之间运动,关系不会发生变化.3,
嗯...设l1的解析式为y=kx+b由图只(2.0)(0.1)在l1∴带入得1=b0=2k+b解得k=-1/2b=1所以l1的解析式为y=-1/2x+1设l2的解析式为y=k1x+b1由图只(-3,0
证明:连接AF,交L2于G点,连接BG、GE,可知BG//CF,GE//AD在∆ACF中,BG//CF即AB/BC=AG/GF在∆ADF中,GE//AD即DE/EF=AG/GF
AB/CD=2/3,∴DE/EF=2/3,EF/DE=3/2(EF+DE)/DE=(3+2)/2即DF/DE=5/2
都有∠3+∠1=∠2这一等量关系作PK平行于AC则∠1=∠APK,∠3=BPK∵∠2=∠APK+∠BPK∴∠3+∠1=∠2
1.L1平行L2,两直线平行,同位角相等,所以角为90°,所以互相垂直2.两直线平行,同位角相等,内错角相等.运用这个来找.
(1)∠1+∠2=∠3.∵l1∥l2,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD中,∠3+∠PCD+∠PDC=180°,∴∠1+∠2=∠3.(2)①过A点作AF∥BD,则AF∥BD∥CE,
(1)∠2=∠1+∠3.证明:如图1,过点P作PE∥l1,∵l1∥l2,∴PE∥l2,∴∠1=∠APE,∠3=∠BPE.又∵∠2=∠APE+∠BPE,∴∠2=∠1+∠3;(2)①如图2所示,当点P在线
解析:设直线DF交AC于点O由l2//l3可得∠OBE=∠OCF,∠OEB=∠OFC(两直线平行,内错角相等)又∠BOE=∠COF所以△BOE∽△COF(AAA)则OF/OE=OC/OB所以(OE+O
(1)由题意得,令直线l1、直线l2中的y为0得:x1=-32,x2=5,由函数图象可知,点B的坐标为(-32,0),点C的坐标为(5,0),∵l1、l2相交于点A,∴解y=2x+3及y=-x+5得:
图④:∠1+∠2+∠3=360°,图⑤:∠1=∠2+∠3,图⑥:∠2=∠1+∠3.